All Downloads are FREE. Search and download functionalities are using the official Maven repository.

io.trino.util.LongLong2LongOpenCustomBigHashMap Maven / Gradle / Ivy

/*
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package io.trino.util;

import io.trino.array.BigArrays;
import io.trino.array.LongBigArray;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;

import java.util.function.LongBinaryOperator;

import static io.airlift.slice.SizeOf.instanceSize;
import static it.unimi.dsi.fastutil.HashCommon.bigArraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import static java.util.Objects.requireNonNull;

// Note: this code was forked from fastutil (http://fastutil.di.unimi.it/) Long2LongOpenCustomHashMap
// and mimics that code style.
// Copyright (C) 2002-2019 Sebastiano Vigna
public class LongLong2LongOpenCustomBigHashMap
        implements Hash
{
    private static final int INSTANCE_SIZE = instanceSize(LongLong2LongOpenCustomBigHashMap.class);

    public interface HashStrategy
    {
        /**
         * Returns the hash code of the specified element with respect to this hash
         * strategy.
         *
         * @param e1 first half of the element.
         * @param e2 second half of the element.
         * @return the hash code of the given element with respect to this hash
         * strategy.
         */
        long hashCode(long e1, long e2);

        /**
         * Returns true if the given elements are equal with respect to this hash
         * strategy.
         *
         * @param a1 first half of an element.
         * @param a2 second half an element.
         * @param b1 first half of another element.
         * @param b2 second half of another element.
         * @return true if the two specified elements are equal with respect to this
         * hash strategy.
         */
        boolean equals(long a1, long a2, long b1, long b2);
    }

    private static final boolean ASSERTS = false;
    /**
     * The array of keys.
     */
    protected LongBigArray key1;
    protected LongBigArray key2;
    /**
     * The array of values.
     */
    protected LongBigArray value;
    /**
     * The mask for wrapping a position counter.
     */
    protected long mask;
    /**
     * Whether this map contains the key zero.
     */
    protected boolean containsNullKey;
    /**
     * The hash strategy of this custom map.
     */
    protected final HashStrategy strategy;
    /**
     * The current table size.
     */
    protected long n;
    /**
     * Threshold after which we rehash. It must be the table size times {@link #f}.
     */
    protected long maxFill;
    /**
     * We never resize below this threshold, which is the construction-time {#n}.
     */
    protected final long minN;
    /**
     * Number of entries in the set (including the key zero, if present).
     */
    protected long size;
    /**
     * The acceptable load factor.
     */
    protected final float f;

    /**
     * The default return value for {@code get()}, {@code put()} and
     * {@code remove()}.
     */
    protected long defRetValue;

    /**
     * The two-part value denoting unmapped keys (or null keys). These values may be passed back via the HashStrategy callback
     * during equality checks, even though no keys with these values have been added.
     */
    protected final long nullKey1;
    protected final long nullKey2;

    /**
     * Creates a new hash map.
     *
     * 

* The actual table size will be the least power of two greater than * {@code expected}/{@code f}. * * @param expected the expected number of elements in the hash map. * @param f the load factor. * @param strategy the strategy. * @param nullKey1 first half of the representation for unmapped keys. * @param nullKey2 second half of the representation for unmapped keys. */ public LongLong2LongOpenCustomBigHashMap(final long expected, final float f, final HashStrategy strategy, long nullKey1, long nullKey2) { this.strategy = strategy; if (f <= 0 || f > 1) { throw new IllegalArgumentException("Load factor must be greater than 0 and smaller than or equal to 1"); } if (expected < 0) { throw new IllegalArgumentException("The expected number of elements must be nonnegative"); } this.f = f; n = bigArraySize(expected, f); minN = n; mask = n - 1; maxFill = maxFill(n, f); this.nullKey1 = nullKey1; this.nullKey2 = nullKey2; key1 = new LongBigArray(nullKey1); key1.ensureCapacity(n + 1); key2 = new LongBigArray(nullKey2); key2.ensureCapacity(n + 1); value = new LongBigArray(); value.ensureCapacity(n + 1); } /** * Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * * @param expected the expected number of elements in the hash map. * @param strategy the strategy. */ public LongLong2LongOpenCustomBigHashMap(final long expected, final HashStrategy strategy, long nullKey1, long nullKey2) { this(expected, DEFAULT_LOAD_FACTOR, strategy, nullKey1, nullKey2); } /** * Creates a new hash map and zero based null keys. * *

* The actual table size will be the least power of two greater than * {@code expected}/{@code f}. * * @param expected the expected number of elements in the hash map. * @param f the load factor. * @param strategy the strategy. */ public LongLong2LongOpenCustomBigHashMap(final long expected, final float f, final HashStrategy strategy) { this(expected, f, strategy, 0, 0); } /** * Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * and zero based null keys. * * @param expected the expected number of elements in the hash map. * @param strategy the strategy. */ public LongLong2LongOpenCustomBigHashMap(final long expected, final HashStrategy strategy) { this(expected, DEFAULT_LOAD_FACTOR, strategy); } /** * Creates a new hash map with initial expected * {@link BigArrays#SEGMENT_SIZE} entries and * {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * * @param strategy the strategy. * @param nullKey1 first half of the representation for unmapped keys. * @param nullKey2 second half of the representation for unmapped keys. */ public LongLong2LongOpenCustomBigHashMap(final HashStrategy strategy, long nullKey1, long nullKey2) { this(BigArrays.SEGMENT_SIZE, strategy, nullKey1, nullKey2); } /** * Creates a new hash map with initial expected * {@link BigArrays#SEGMENT_SIZE} entries, * {@link Hash#DEFAULT_LOAD_FACTOR} as load factor, * and zero based null keys. * * @param strategy the strategy. */ public LongLong2LongOpenCustomBigHashMap(final HashStrategy strategy) { this(BigArrays.SEGMENT_SIZE, DEFAULT_LOAD_FACTOR, strategy); } public void defaultReturnValue(final long rv) { defRetValue = rv; } public long defaultReturnValue() { return defRetValue; } /** * Returns the size of this hash map in bytes. */ public long sizeOf() { return INSTANCE_SIZE + key1.sizeOf() + key2.sizeOf() + value.sizeOf(); } /** * Returns the hashing strategy. * * @return the hashing strategy of this custom hash map. */ public HashStrategy strategy() { return strategy; } private long realSize() { return containsNullKey ? size - 1 : size; } private long removeEntry(final long pos) { final long oldValue = value.get(pos); size--; shiftKeys(pos); if (n > minN && size < maxFill / 4 && n > BigArrays.SEGMENT_SIZE) { rehash(n / 2); } return oldValue; } private long removeNullEntry() { containsNullKey = false; final long oldValue = value.get(n); size--; if (n > minN && size < maxFill / 4 && n > BigArrays.SEGMENT_SIZE) { rehash(n / 2); } return oldValue; } private long find(final long k1, final long k2) { if (strategy.equals(k1, k2, nullKey1, nullKey2)) { return containsNullKey ? n : -(n + 1); } long curr1; long curr2; final LongBigArray key1 = this.key1; final LongBigArray key2 = this.key2; // The starting point. long pos = HashCommon.mix(strategy.hashCode(k1, k2)) & mask; curr1 = key1.get(pos); curr2 = key2.get(pos); if (curr1 == nullKey1 && curr2 == nullKey2) { return -(pos + 1); } if (strategy.equals(k1, k2, curr1, curr2)) { return pos; } // There's always an unused entry. while (true) { pos = (pos + 1) & mask; curr1 = key1.get(pos); curr2 = key2.get(pos); if (curr1 == nullKey1 && curr2 == nullKey2) { return -(pos + 1); } if (strategy.equals(k1, k2, curr1, curr2)) { return pos; } } } private void insert(final long pos, final long k1, final long k2, final long v) { if (pos == n) { containsNullKey = true; } key1.set(pos, k1); key2.set(pos, k2); value.set(pos, v); if (size++ >= maxFill) { rehash(bigArraySize(size + 1, f)); } if (ASSERTS) { checkTable(); } } public long put(final long k1, final long k2, final long v) { final long pos = find(k1, k2); if (pos < 0) { insert(-pos - 1, k1, k2, v); return defRetValue; } final long oldValue = value.get(pos); value.set(pos, v); return oldValue; } private long addToValue(final long pos, final long incr) { final long oldValue = value.get(pos); value.set(pos, oldValue + incr); return oldValue; } /** * Adds an increment to value currently associated with a key. * *

* Note that this method respects the {@linkplain #defaultReturnValue() default * return value} semantics: when called with a key that does not currently * appears in the map, the key will be associated with the default return value * plus the given increment. * * @param k1 the first half of key. * @param k2 the second half of key. * @param incr the increment. * @return the old value, or the {@linkplain #defaultReturnValue() default * return value} if no value was present for the given key. */ public long addTo(final long k1, final long k2, final long incr) { long pos; if (strategy.equals(k1, k2, nullKey1, nullKey2)) { if (containsNullKey) { return addToValue(n, incr); } pos = n; containsNullKey = true; } else { final LongBigArray key1 = this.key1; final LongBigArray key2 = this.key2; // The starting point. pos = HashCommon.mix(strategy.hashCode(k1, k2)) & mask; long curr1 = key1.get(pos); long curr2 = key2.get(pos); if (!(curr1 == nullKey1 && curr2 == nullKey2)) { if (strategy.equals(curr1, curr2, k1, k2)) { return addToValue(pos, incr); } pos = (pos + 1) & mask; curr1 = key1.get(pos); curr2 = key2.get(pos); while (!(curr1 == nullKey1 && curr2 == nullKey2)) { if (strategy.equals(curr1, curr2, k1, k2)) { return addToValue(pos, incr); } pos = (pos + 1) & mask; curr1 = key1.get(pos); curr2 = key2.get(pos); } } } key1.set(pos, k1); key2.set(pos, k2); value.set(pos, defRetValue + incr); if (size++ >= maxFill) { rehash(bigArraySize(size + 1, f)); } if (ASSERTS) { checkTable(); } return defRetValue; } /** * Shifts left entries with the specified hash code, starting at the specified * position, and empties the resulting free entry. * * @param pos a starting position. */ protected final void shiftKeys(long pos) { // Shift entries with the same hash. long last; long slot; long curr1; long curr2; final LongBigArray key1 = this.key1; final LongBigArray key2 = this.key2; for (; ; ) { last = pos; pos = (pos + 1) & mask; for (; ; ) { curr1 = key1.get(pos); curr2 = key2.get(pos); if ((curr1 == nullKey1) && (curr2 == nullKey2)) { key1.set(last, nullKey1); key2.set(last, nullKey2); return; } slot = HashCommon.mix(strategy.hashCode(curr1, curr2)) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) { break; } pos = (pos + 1) & mask; } key1.set(last, curr1); key2.set(last, curr2); value.set(last, value.get(pos)); } } public long remove(final long k1, final long k2) { if (strategy.equals(k1, k2, nullKey1, nullKey2)) { if (containsNullKey) { return removeNullEntry(); } return defRetValue; } final LongBigArray key1 = this.key1; final LongBigArray key2 = this.key2; // The starting point. long pos = HashCommon.mix(strategy.hashCode(k1, k2)) & mask; long curr1 = key1.get(pos); long curr2 = key2.get(pos); if ((curr1 == nullKey1) && (curr2 == nullKey2)) { return defRetValue; } if (strategy.equals(k1, k2, curr1, curr2)) { return removeEntry(pos); } while (true) { pos = (pos + 1) & mask; curr1 = key1.get(pos); curr2 = key2.get(pos); if ((curr1 == nullKey1) && (curr2 == nullKey2)) { return defRetValue; } if (strategy.equals(k1, k2, curr1, curr2)) { return removeEntry(pos); } } } public long get(final long k1, final long k2) { if (strategy.equals(k1, k2, nullKey1, nullKey2)) { return containsNullKey ? value.get(n) : defRetValue; } final LongBigArray key1 = this.key1; final LongBigArray key2 = this.key2; // The starting point. long pos = HashCommon.mix(strategy.hashCode(k1, k2)) & mask; long curr1 = key1.get(pos); long curr2 = key2.get(pos); if ((curr1 == nullKey1) && (curr2 == nullKey2)) { return defRetValue; } if (strategy.equals(k1, k2, curr1, curr2)) { return value.get(pos); } // There's always an unused entry. while (true) { pos = (pos + 1) & mask; curr1 = key1.get(pos); curr2 = key2.get(pos); if ((curr1 == nullKey1) && (curr2 == nullKey2)) { return defRetValue; } if (strategy.equals(k1, k2, curr1, curr2)) { return value.get(pos); } } } public boolean containsKey(final long k1, final long k2) { if (strategy.equals(k1, k2, nullKey1, nullKey2)) { return containsNullKey; } final LongBigArray key1 = this.key1; final LongBigArray key2 = this.key2; // The starting point. long pos = HashCommon.mix(strategy.hashCode(k1, k2)) & mask; long curr1 = key1.get(pos); long curr2 = key2.get(pos); if ((curr1 == nullKey1) && (curr2 == nullKey2)) { return false; } if (strategy.equals(k1, k2, curr1, curr2)) { return true; } // There's always an unused entry. while (true) { pos = (pos + 1) & mask; curr1 = key1.get(pos); curr2 = key2.get(pos); if ((curr1 == nullKey1) && (curr2 == nullKey2)) { return false; } if (strategy.equals(k1, k2, curr1, curr2)) { return true; } } } public boolean containsValue(final long v) { final LongBigArray value = this.value; final LongBigArray key1 = this.key1; final LongBigArray key2 = this.key2; if (containsNullKey && (value.get(n) == v)) { return true; } for (long i = n; i-- != 0; ) { if (!(key1.get(i) == nullKey1 && key2.get(i) == nullKey2) && (value.get(i) == v)) { return true; } } return false; } public long getOrDefault(final long k1, final long k2, final long defaultValue) { if (strategy.equals(k1, k2, nullKey1, nullKey2)) { return containsNullKey ? value.get(n) : defaultValue; } final LongBigArray key1 = this.key1; final LongBigArray key2 = this.key2; // The starting point. long pos = HashCommon.mix(strategy.hashCode(k1, k2)) & mask; long curr1 = key1.get(pos); long curr2 = key2.get(pos); if ((curr1 == nullKey1) && (curr2 == nullKey2)) { return defaultValue; } if (strategy.equals(k1, k2, curr1, curr2)) { return value.get(pos); } // There's always an unused entry. while (true) { pos = (pos + 1) & mask; curr1 = key1.get(pos); curr2 = key2.get(pos); if ((curr1 == nullKey1) && (curr2 == nullKey2)) { return defaultValue; } if (strategy.equals(k1, k2, curr1, curr2)) { return value.get(pos); } } } public long putIfAbsent(final long k1, final long k2, final long v) { final long pos = find(k1, k2); if (pos >= 0) { return value.get(pos); } insert(-pos - 1, k1, k2, v); return defRetValue; } public boolean remove(final long k1, final long k2, final long v) { if (strategy.equals(k1, k2, nullKey1, nullKey2)) { if (containsNullKey && (v == value.get(n))) { removeNullEntry(); return true; } return false; } final LongBigArray key1 = this.key1; final LongBigArray key2 = this.key2; // The starting point. long pos = HashCommon.mix(strategy.hashCode(k1, k2)) & mask; long curr1 = key1.get(pos); long curr2 = key2.get(pos); if ((curr1 == nullKey1) && (curr2 == nullKey2)) { return false; } if (strategy.equals(k1, k2, curr1, curr2) && (v == value.get(pos))) { removeEntry(pos); return true; } while (true) { pos = (pos + 1) & mask; curr1 = key1.get(pos); curr2 = key2.get(pos); if ((curr1 == nullKey1) && (curr2 == nullKey2)) { return false; } if (strategy.equals(k1, k2, curr1, curr2) && (v == value.get(pos))) { removeEntry(pos); return true; } } } public boolean replace(final long k1, final long k2, final long oldValue, final long v) { final long pos = find(k1, k2); if (pos < 0 || !(oldValue == value.get(pos))) { return false; } value.set(pos, v); return true; } public long replace(final long k1, final long k2, final long v) { final long pos = find(k1, k2); if (pos < 0) { return defRetValue; } final long oldValue = value.get(pos); value.set(pos, v); return oldValue; } public long computeIfAbsent(final long k1, final long k2, final LongBinaryOperator mappingFunction) { requireNonNull(mappingFunction); final long pos = find(k1, k2); if (pos >= 0) { return value.get(pos); } final long newValue = mappingFunction.applyAsLong(k1, k2); insert(-pos - 1, k1, k2, newValue); return newValue; } public long merge(final long k1, final long k2, final long v, final java.util.function.BiFunction remappingFunction) { requireNonNull(remappingFunction); final long pos = find(k1, k2); if (pos < 0) { insert(-pos - 1, k1, k2, v); return v; } final Long newValue = remappingFunction.apply(Long.valueOf(value.get(pos)), Long.valueOf(v)); if (newValue == null) { if (strategy.equals(k1, k2, nullKey1, nullKey2)) { removeNullEntry(); } else { removeEntry(pos); } return defRetValue; } value.set(pos, newValue.longValue()); return newValue.longValue(); } /** * Removes all elements from this map. * *

To increase object reuse, this method does not change the table size. If * you want to reduce the table size, you must use {@link #trim()}. */ public void clear() { if (size == 0) { return; } size = 0; containsNullKey = false; key1.fill(nullKey1); key2.fill(nullKey2); } public long size() { return size; } public boolean isEmpty() { return size == 0; } /** * Rehashes the map, making the table as small as possible. * *

* This method rehashes the table to the smallest size satisfying the load * factor. It can be used when the set will not be changed anymore, so to * optimize access speed and size. * *

* If the table size is already the minimum possible, this method does nothing. * * @return true if there was enough memory to trim the map. * @see #trim(long) */ public boolean trim() { return trim(size); } /** * Rehashes this map if the table is too large. * *

* Let N be the smallest table size that can hold * max(n,{@link #size()}) entries, still satisfying the load * factor. If the current table size is smaller than or equal to N, * this method does nothing. Otherwise, it rehashes this map in a table of size * N. * *

* This method is useful when reusing maps. {@linkplain #clear() Clearing a map} * leaves the table size untouched. If you are reusing a map many times, you can * call this method with a typical size to avoid keeping around a very large * table just because of a few large transient maps. * * @param n the threshold for the trimming. * @return true if there was enough memory to trim the map. * @see #trim() */ public boolean trim(final long n) { final long l = bigArraySize(n, f); if (l >= this.n || size > maxFill(l, f)) { return true; } try { rehash(l); } catch (OutOfMemoryError cantDoIt) { return false; } return true; } /** * Rehashes the map. * *

* This method implements the basic rehashing strategy, and may be overridden by * subclasses implementing different rehashing strategies (e.g., disk-based * rehashing). However, you should not override this method unless you * understand the internal workings of this class. * * @param newN the new size */ protected void rehash(final long newN) { final LongBigArray key1 = this.key1; final LongBigArray key2 = this.key2; final LongBigArray value = this.value; final long mask = newN - 1; // Note that this is used by the hashing macro final LongBigArray newKey1 = new LongBigArray(nullKey1); newKey1.ensureCapacity(newN + 1); final LongBigArray newKey2 = new LongBigArray(nullKey2); newKey2.ensureCapacity(newN + 1); final LongBigArray newValue = new LongBigArray(); newValue.ensureCapacity(newN + 1); long i = n; long pos; for (long j = realSize(); j-- != 0; ) { --i; while ((key1.get(i) == nullKey1) && (key2.get(i) == nullKey2)) { --i; } pos = HashCommon.mix(strategy.hashCode(key1.get(i), key2.get(i))) & mask; if (!(newKey1.get(pos) == nullKey1 && newKey2.get(pos) == nullKey2)) { pos = (pos + 1) & mask; while (!(newKey1.get(pos) == nullKey1 && newKey2.get(pos) == nullKey2)) { pos = (pos + 1) & mask; } } newKey1.set(pos, key1.get(i)); newKey2.set(pos, key2.get(i)); newValue.set(pos, value.get(i)); } newValue.set(newN, value.get(n)); n = newN; this.mask = mask; maxFill = maxFill(n, f); this.key1 = newKey1; this.key2 = newKey2; this.value = newValue; } private void checkTable() { } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy