All Downloads are FREE. Search and download functionalities are using the official Maven repository.

io.trino.plugin.ml.FeatureVectorUnitNormalizer Maven / Gradle / Ivy

There is a newer version: 458
Show newest version
/*
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package io.trino.plugin.ml;

import io.trino.plugin.ml.type.ModelType;

import java.util.HashMap;
import java.util.Map;

import static com.google.common.base.Preconditions.checkArgument;

/**
 * Normalizes features by making every feature vector unit length.
 * 

* NOTE: This is generally not a good way to normalize features, and is mainly provided as an example. */ public class FeatureVectorUnitNormalizer extends AbstractFeatureTransformation { @Override public ModelType getType() { return ModelType.MODEL; } @Override public byte[] getSerializedData() { // This transformation has no state return new byte[0]; } public static FeatureVectorUnitNormalizer deserialize(byte[] modelData) { checkArgument(modelData.length == 0, "modelData should be empty"); return new FeatureVectorUnitNormalizer(); } @Override public void train(Dataset dataset) { // Do nothing, since this transformation is stateless } @Override public FeatureVector transform(FeatureVector features) { double sumSquares = 0; for (Double value : features.getFeatures().values()) { sumSquares += value * value; } double magnitude = Math.sqrt(sumSquares); Map transformed = new HashMap<>(); for (Map.Entry entry : features.getFeatures().entrySet()) { transformed.put(entry.getKey(), entry.getValue() / magnitude); } return new FeatureVector(transformed); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy