io.trino.plugin.ml.LearnLibSvmRegressorAggregation Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of trino-ml Show documentation
Show all versions of trino-ml Show documentation
Trino - Machine Learning Plugin
The newest version!
/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package io.trino.plugin.ml;
import io.airlift.slice.Slice;
import io.trino.plugin.ml.type.RegressorType;
import io.trino.spi.block.BlockBuilder;
import io.trino.spi.block.SqlMap;
import io.trino.spi.function.AggregationFunction;
import io.trino.spi.function.AggregationState;
import io.trino.spi.function.InputFunction;
import io.trino.spi.function.OutputFunction;
import io.trino.spi.function.SqlType;
import static io.trino.spi.type.StandardTypes.BIGINT;
import static io.trino.spi.type.StandardTypes.DOUBLE;
import static io.trino.spi.type.StandardTypes.VARCHAR;
@AggregationFunction(value = "learn_libsvm_regressor", decomposable = false)
public final class LearnLibSvmRegressorAggregation
{
private LearnLibSvmRegressorAggregation() {}
@InputFunction
public static void input(
@AggregationState LearnState state,
@SqlType(BIGINT) long label,
@SqlType("map(bigint,double)") SqlMap features,
@SqlType(VARCHAR) Slice parameters)
{
input(state, (double) label, features, parameters);
}
@InputFunction
public static void input(
@AggregationState LearnState state,
@SqlType(DOUBLE) double label,
@SqlType("map(bigint,double)") SqlMap features,
@SqlType(VARCHAR) Slice parameters)
{
state.getLabels().add(label);
FeatureVector featureVector = ModelUtils.toFeatures(features);
state.addMemoryUsage(featureVector.getEstimatedSize());
state.getFeatureVectors().add(featureVector);
state.setParameters(parameters);
}
@OutputFunction(RegressorType.NAME)
public static void output(@AggregationState LearnState state, BlockBuilder out)
{
Dataset dataset = new Dataset(state.getLabels(), state.getFeatureVectors(), state.getLabelEnumeration().inverse());
Model model = new RegressorFeatureTransformer(new SvmRegressor(LibSvmUtils.parseParameters(state.getParameters().toStringUtf8())), new FeatureUnitNormalizer());
model.train(dataset);
RegressorType.REGRESSOR.writeSlice(out, ModelUtils.serialize(model));
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy