io.virtdata.libbasics.shared.distributions.WeightedStringsFromCSVAutoDocsInfo Maven / Gradle / Ivy
// This file is auto-generated.
package io.virtdata.libbasics.shared.distributions;
import io.virtdata.annotations.Category;
import io.virtdata.annotations.Service;
import io.virtdata.processors.DocCtorData;
import io.virtdata.processors.DocForFuncCtor;
import io.virtdata.processors.DocFuncData;
import java.lang.String;
import java.util.ArrayList;
import java.util.LinkedHashMap;
import java.util.List;
@Service(DocFuncData.class)
public class WeightedStringsFromCSVAutoDocsInfo implements DocFuncData {
public String getClassName() {
return "WeightedStringsFromCSV";
}
public String getPackageName() {
return "io.virtdata.libbasics.shared.distributions";
}
public String getClassJavadoc() {
return "Provides sampling of a given field in a CSV file according\n"
+ "to discrete probabilities. The CSV file must have headers which can\n"
+ "be used to find the named columns for value and weight. The value column\n"
+ "contains the string result to be returned by the function. The weight\n"
+ "column contains the floating-point weight or mass associated with the\n"
+ "value on the same line. All the weights are normalized automatically.\n"
+ "\n"
+ "If there are multiple file names containing the same format, then they\n"
+ "will all be read in the same way.\n"
+ "\n"
+ "If the first word in the filenames list is 'map', then the values will not\n"
+ "be pseudo-randomly selected. Instead, they will be mapped over in some\n"
+ "other unsorted and stable order as input values vary from 0L to Long.MAX_VALUE.\n"
+ "\n"
+ "Generally, you want to leave out the 'map' directive to get \"random sampling\"\n"
+ "of these values.\n"
+ "\n"
+ "This function works the same as the three-parametered form of WeightedStrings,\n"
+ "which is deprecated in lieu of this one. Use this one instead.\n";
}
public String getInType() {
return "long";
}
public String getOutType() {
return "java.lang.String";
}
public Category[] getCategories() {
return new Category[] { Category.general };
}
public List getCtors() {
return new ArrayList() {{
add(new DocForFuncCtor("WeightedStringsFromCSV", "Create a sampler of strings from the given CSV file. The CSV file must have plain CSV headers\n"
+ "as its first line.\n"
+ "@param valueColumn The name of the value column to be sampled\n"
+ "@param weightColumn The name of the weight column, which must be parsable as a double\n"
+ "@param filenames One or more file names which will be read in to the sampler buffer\n",
new LinkedHashMap() {{
put("valueColumn","java.lang.String");
put("weightColumn","java.lang.String");
put("filenames","java.lang.String[]...");
}},
new ArrayList>() {{
}}
));
}};
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy