All Downloads are FREE. Search and download functionalities are using the official Maven repository.

io.virtdata.util.VirtDataFunctions Maven / Gradle / Ivy

Go to download

Statistical sampling library for use in virtualdataset libraries, based on apache commons math 4

There is a newer version: 2.12.15
Show newest version
package io.virtdata.util;

import org.apache.commons.lang3.ClassUtils;

import java.lang.reflect.TypeVariable;
import java.security.InvalidParameterException;
import java.util.function.*;

public class VirtDataFunctions {

    private enum FuncType {
        LongFunction(LongFunction.class, long.class),
        LongUnaryOperator(java.util.function.LongUnaryOperator.class, long.class),
        IntFunction(java.util.function.IntFunction.class, int.class),
        IntUnaryOperator(java.util.function.IntUnaryOperator.class, int.class),
        DoubleFunction(java.util.function.DoubleFunction.class, double.class),
        DoubleUnaryOperator(java.util.function.DoubleUnaryOperator.class, double.class),
        Function(java.util.function.Function.class, Object.class);

        private final Class functionClazz;
        private final Class inputClazz;

        FuncType(Class functionClazz, Class example) {
            this.functionClazz = functionClazz;
            this.inputClazz = example;
        }

        public static FuncType valueOf(Class clazz) {
            for (FuncType value : FuncType.values()) {
                if (value.functionClazz.isAssignableFrom(clazz)) {
                    return value;
                }
            }
            throw new InvalidParameterException("No func type was found for " + clazz.getCanonicalName());
        }

    }

    /**
     * Adapt a functional object into a different type of functional object.
     *
     * @param func     The original function object.
     * @param type     The type of function object needed.
     * @param output   The output type required for the adapted function.
     * @param truncate Whether to throw an exception on any narrowing conversion. If this is set to false,
     *                 then basic roll-over logic is applied on narrowing conversions.
     * @param       The type of function object needed.
     * @return An instance of F
     */
    @SuppressWarnings("unchecked")
    public static  F adapt(Object func, Class type, Class output, boolean truncate) {
        FuncType funcType = FuncType.valueOf(type);
        switch (funcType) {
            case LongUnaryOperator:
                return truncate ? (F) adaptLongUnaryOperator(func, output) : (F) adaptLongUnaryOperatorStrict(func, output);
            case DoubleUnaryOperator:
                return truncate ? adaptDoubleUnaryOperator(func, output) : adaptDoubleUnaryOperatorStrict(func, output);
            case IntUnaryOperator:
                return truncate ? adaptIntUnaryOperator(func, output) : adaptIntUnaryOperatorStrict(func, output);
            case DoubleFunction:
                return truncate ? adaptDoubleFunction(func, output) : adaptDoubleFunctionStrict(func, output);
            case LongFunction:
                return truncate ? (F) adaptLongFunction(func, output) : (F) adaptLongFunctionStrict(func, output);
            case IntFunction:
                return truncate ? adaptIntFunction(func, output) : adaptIntFunction(func, output);
            case Function:
                return truncate ? (F) adaptFunction(func, output) : adaptFunctionStrict(func, output);
            default:
                throw new RuntimeException("Unable to convert " + func.getClass().getCanonicalName() +
                        " to " + type.getCanonicalName() + (truncate ? " WITH " : " WITHOUT ") + "truncation");

        }
    }


    private static LongFunction adaptLongFunctionStrict(Object func, Class output) {
        FuncType isaType = FuncType.valueOf(func.getClass());
        switch (isaType) {
            case LongFunction:
                LongFunction f1 = assertTypesAssignable(func, LongFunction.class, Object.class);
                return f1;
            case LongUnaryOperator:
                LongUnaryOperator f2 = assertTypesAssignable(func, LongUnaryOperator.class);
                return f2::applyAsLong;
            case Function:
                Function f7 = assertTypesAssignable(func, Function.class, Long.class);
                return (long l) -> f7.apply(l);
            default:
                throw new RuntimeException("Unable to convert " + func.getClass().getCanonicalName() + " to a " +
                        LongUnaryOperator.class.getCanonicalName() + " since this would cause a narrowing conversion.");
        }

    }

    private static Function  adaptFunction(Object func, Class output) {
        FuncType isaType = FuncType.valueOf(func.getClass());
        switch (isaType) {
            case LongFunction:
                LongFunction f1 = (LongFunction)func;
                Function rf1 = f1::apply;
                return rf1;
            case LongUnaryOperator:
                LongUnaryOperator f2 = (LongUnaryOperator)func;
                Function rf2 = f2::applyAsLong;
                return rf2;
            case IntFunction:
                IntFunction f3 = (IntFunction)func;
                Function rf3 = f3::apply;
                return rf3;
            case IntUnaryOperator:
                IntUnaryOperator f4 = (IntUnaryOperator)func;
                Function rf4 = f4::applyAsInt;
                return rf4;
            case DoubleFunction:
                DoubleFunction f5 = (DoubleFunction)func;
                Function rf5 = f5::apply;
                return rf5;
            case DoubleUnaryOperator:
                DoubleUnaryOperator f6 = (DoubleUnaryOperator)func;
                Function rf6 = f6::applyAsDouble;
                return rf6;
            case Function:
                return (Function) func;
            default:
                throw new RuntimeException("Unable to map function:" + func);
        }
    }

    private static  F adaptFunctionStrict(Object func, Class output) {
        throw new RuntimeException("This must be implemented, now that it is used.");
    }

    private static  F adaptDoubleFunctionStrict(Object func, Class output) {
        throw new RuntimeException("This must be implemented, now that it is used.");
    }

    private static  F adaptIntUnaryOperatorStrict(Object func, Class output) {
        throw new RuntimeException("This must be implemented, now that it is used.");
    }

    private static  F adaptDoubleUnaryOperatorStrict(Object func, Class output) {
        throw new RuntimeException("This must be implemented, now that it is used.");
    }

    private static LongUnaryOperator adaptLongUnaryOperatorStrict(Object func, Class output) {
        FuncType isaType = FuncType.valueOf(func.getClass());

        switch (isaType) {
            case LongFunction:
                LongFunction o2 = assertTypesAssignable(func, LongFunction.class, long.class);
                return o2::apply;
            case LongUnaryOperator:
                LongUnaryOperator o5 = assertTypesAssignable(func, LongUnaryOperator.class);
                return o5;
            case Function:
                Function o7 = assertTypesAssignable(func, Function.class, long.class, long.class);
                return o7::apply;
            default:
                throw new RuntimeException("Unable to convert " + func.getClass().getCanonicalName() + " to a " +
                        LongUnaryOperator.class.getCanonicalName() + " since this would cause a narrowing conversion.");
        }
    }

    private static  F adaptIntFunction(Object func, Class output) {
        throw new RuntimeException("This must be implemented, now that it is used.");
    }

    private static LongFunction adaptLongFunction(Object func, Class output) {
        FuncType isaType = FuncType.valueOf(func.getClass());
        switch (isaType) {
            case LongFunction:
                LongFunction f1 = assertTypesAssignable(func, LongFunction.class, Object.class);
                return f1;
            case LongUnaryOperator:
                LongUnaryOperator f2 = assertTypesAssignable(func, LongUnaryOperator.class);
                return f2::applyAsLong;
            case IntFunction:
                IntFunction f3 = assertTypesAssignable(func, IntFunction.class);
                return (long l) -> f3.apply((int) (l % Integer.MAX_VALUE));
            case IntUnaryOperator:
                IntUnaryOperator f4 = assertTypesAssignable(func, IntUnaryOperator.class);
                return (long l) -> f4.applyAsInt((int) (l % Integer.MAX_VALUE));
            case DoubleFunction:
                DoubleFunction f5 = assertTypesAssignable(func, DoubleFunction.class);
                return f5::apply;
            case DoubleUnaryOperator:
                DoubleUnaryOperator f6 = assertTypesAssignable(func, DoubleUnaryOperator.class);
                return f6::applyAsDouble;
            case Function:
                Function f7 = assertTypesAssignable(func, Function.class);
                assertOutputAssignable(f7.apply(1L),output);
                return (long l) -> f7.apply(l);
            default:
                throw new RuntimeException("Unable to convert " + func.getClass().getCanonicalName() + " to a " +
                        LongUnaryOperator.class.getCanonicalName());
        }
    }

    private static void assertOutputAssignable(Object result, Class clazz) {
        if (!ClassUtils.isAssignable(result.getClass(), clazz, true)) {
            throw new InvalidParameterException("Unable to assign type of " + result.getClass().getCanonicalName()
                    + " to " + clazz.getCanonicalName());
        }

//        if (!clazz.isAssignableFrom(result.getClass())) {
//            throw new InvalidParameterException("Unable to assign type of " + result.getClass().getCanonicalName()
//                    + " to " + clazz.getCanonicalName());
//        }
    }

    private static  F adaptDoubleFunction(Object func, Class output) {
        throw new RuntimeException("This must be implemented, now that it is used.");
    }

    private static  F adaptIntUnaryOperator(Object func, Class output) {
        throw new RuntimeException("This must be implemented, now that it is used.");
    }

    private static  F adaptDoubleUnaryOperator(Object func, Class output) {
        throw new RuntimeException("This must be implemented, now that it is used.");
    }

    private static LongUnaryOperator adaptLongUnaryOperator(Object func, Class output) {
        FuncType isaType = FuncType.valueOf(func.getClass());

        switch (isaType) {
            case IntFunction:
                IntFunction o1 = assertTypesAssignable(func, IntFunction.class, long.class);
                return (long l) -> o1.apply((int) l % Integer.MAX_VALUE);
            case LongFunction:
                LongFunction o2 = assertTypesAssignable(func, LongFunction.class, long.class);
                return o2::apply;
            case DoubleFunction:
                DoubleFunction o3 = assertTypesAssignable(func, DoubleFunction.class, long.class);
                return o3::apply;
            case IntUnaryOperator:
                IntUnaryOperator o4 = assertTypesAssignable(func, IntUnaryOperator.class);
                return (long l) -> o4.applyAsInt((int) l % Integer.MAX_VALUE);
            case LongUnaryOperator:
                LongUnaryOperator o5 = assertTypesAssignable(func, LongUnaryOperator.class);
                return o5;
            case DoubleUnaryOperator:
                DoubleUnaryOperator o6 = assertTypesAssignable(func, DoubleUnaryOperator.class);
                return (long l) -> (long) (o6.applyAsDouble(l) % Long.MAX_VALUE);
            case Function:
                Function o7 = assertTypesAssignable(func, Function.class, long.class, long.class);
                return o7::apply;
        }
        throw new InvalidParameterException("Unable to convert " + func.getClass().getCanonicalName() + " to a " +
                LongUnaryOperator.class.getCanonicalName());
    }

    private static  T assertTypesAssignable(
            Object base,
            Class wantType,
            Class... clazzes) {

        if (!wantType.isAssignableFrom(base.getClass())) {
            throw new InvalidParameterException("Unable to assign " + wantType.getCanonicalName() + " from " +
                    base.getClass().getCanonicalName());
        }

        TypeVariable>[] typeParameters = base.getClass().getTypeParameters();
        if (typeParameters.length > 0) {
            if (clazzes.length != typeParameters.length) {
                throw new InvalidParameterException(
                        "type parameter lengths are mismatched:" + clazzes.length + ", " + typeParameters.length
                );
            }
            for (int i = 0; i < clazzes.length; i++) {
                Class from = clazzes[i];
                TypeVariable> to = typeParameters[i];
                boolean assignableFrom = to.getGenericDeclaration().isAssignableFrom(from);
                if (!assignableFrom) {
                    throw new InvalidParameterException("Can not assign " + from.getCanonicalName() + " to " + to.getGenericDeclaration().getCanonicalName());
                }
            }

        }

        return (T) (base);
    }


}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy