com.ibm.icu.impl.coll.CollationKeys Maven / Gradle / Ivy
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html#License
/*
*******************************************************************************
* Copyright (C) 2012-2015, International Business Machines
* Corporation and others. All Rights Reserved.
*******************************************************************************
* CollationKeys.java, ported from collationkeys.h/.cpp
*
* C++ version created on: 2012sep02
* created by: Markus W. Scherer
*/
package com.ibm.icu.impl.coll;
import com.ibm.icu.text.Collator;
public final class CollationKeys /* all methods are static */ {
// Java porting note: C++ SortKeyByteSink class extends a common class ByteSink,
// which is not available in Java. We don't need a super class created for implementing
// collation features.
public static abstract class SortKeyByteSink {
protected byte[] buffer_;
// protected int capacity_; == buffer_.length
private int appended_ = 0;
// not used in Java -- private int ignore_ = 0;
public SortKeyByteSink(byte[] dest) {
buffer_ = dest;
}
/**
* Needed in Java for when we write to the buffer directly.
* In C++, the SortKeyByteSink is a subclass of ByteSink and lower-level code can write to that.
* TODO: Can we make Java SortKeyByteSink have-a ByteArrayWrapper and write through to it?
* Or maybe create interface ByteSink, have SortKeyByteSink implement it, and have BOCSU write to that??
*/
public void setBufferAndAppended(byte[] dest, int app) {
buffer_ = dest;
appended_ = app;
}
/* not used in Java -- public void IgnoreBytes(int numIgnore) {
ignore_ = numIgnore;
} */
/**
* @param bytes
* the array of byte
* @param n
* the length of bytes to be appended
*/
public void Append(byte[] bytes, int n) {
if (n <= 0 || bytes == null) {
return;
}
/* not used in Java -- if (ignore_ > 0) {
int ignoreRest = ignore_ - n;
if (ignoreRest >= 0) {
ignore_ = ignoreRest;
return;
} else {
start = ignore_;
n = -ignoreRest;
ignore_ = 0;
}
} */
int length = appended_;
appended_ += n;
int available = buffer_.length - length;
if (n <= available) {
System.arraycopy(bytes, 0, buffer_, length, n);
} else {
AppendBeyondCapacity(bytes, 0, n, length);
}
}
public void Append(int b) {
/* not used in Java -- if (ignore_ > 0) {
--ignore_;
} else */ {
if (appended_ < buffer_.length || Resize(1, appended_)) {
buffer_[appended_] = (byte) b;
}
++appended_;
}
}
// Java porting note: This method is not used by collator implementation.
//
// virtual char *GetAppendBuffer(int min_capacity,
// int desired_capacity_hint,
// char *scratch, int scratch_capacity,
// int *result_capacity);
public int NumberOfBytesAppended() {
return appended_;
}
public int GetRemainingCapacity() {
return /* not used in Java -- ignore_ + */ buffer_.length - appended_;
}
public boolean Overflowed() {
return appended_ > buffer_.length;
}
/* not used in Java -- public boolean IsOk() {
return true;
} */
/**
* @param bytes
* the array of byte
* @param start
* the start index within the array to be appended
* @param n
* the length of bytes to be appended
* @param length
* the length of buffer required to store the entire data (i.e. already appended
* bytes + bytes to be appended by this method)
*/
protected abstract void AppendBeyondCapacity(byte[] bytes, int start, int n, int length);
protected abstract boolean Resize(int appendCapacity, int length);
}
public static class LevelCallback {
/**
* @param level
* The next level about to be written to the ByteSink.
* @return true if the level is to be written (the base class implementation always returns
* true)
*/
boolean needToWrite(int level) {
return true;
}
}
public static final LevelCallback SIMPLE_LEVEL_FALLBACK = new LevelCallback();
private static final class SortKeyLevel {
private static final int INITIAL_CAPACITY = 40;
byte[] buffer = new byte[INITIAL_CAPACITY];
int len = 0;
// not used in Java -- private static final boolean ok = true; // In C++ "ok" is reset when memory allocations fail.
SortKeyLevel() {
}
/* not used in Java -- boolean isOk() {
return ok;
} */
boolean isEmpty() {
return len == 0;
}
int length() {
return len;
}
// Java porting note: Java uses this instead of C++ operator [] overload
// uint8_t operator[](int index)
byte getAt(int index) {
return buffer[index];
}
byte[] data() {
return buffer;
}
void appendByte(int b) {
if (len < buffer.length || ensureCapacity(1)) {
buffer[len++] = (byte) b;
}
}
void appendWeight16(int w) {
assert ((w & 0xffff) != 0);
byte b0 = (byte) (w >>> 8);
byte b1 = (byte) w;
int appendLength = (b1 == 0) ? 1 : 2;
if ((len + appendLength) <= buffer.length || ensureCapacity(appendLength)) {
buffer[len++] = b0;
if (b1 != 0) {
buffer[len++] = b1;
}
}
}
void appendWeight32(long w) {
assert (w != 0);
byte[] bytes = new byte[] { (byte) (w >>> 24), (byte) (w >>> 16), (byte) (w >>> 8),
(byte) w };
int appendLength = (bytes[1] == 0) ? 1 : (bytes[2] == 0) ? 2 : (bytes[3] == 0) ? 3 : 4;
if ((len + appendLength) <= buffer.length || ensureCapacity(appendLength)) {
buffer[len++] = bytes[0];
if (bytes[1] != 0) {
buffer[len++] = bytes[1];
if (bytes[2] != 0) {
buffer[len++] = bytes[2];
if (bytes[3] != 0) {
buffer[len++] = bytes[3];
}
}
}
}
}
void appendReverseWeight16(int w) {
assert ((w & 0xffff) != 0);
byte b0 = (byte) (w >>> 8);
byte b1 = (byte) w;
int appendLength = (b1 == 0) ? 1 : 2;
if ((len + appendLength) <= buffer.length || ensureCapacity(appendLength)) {
if (b1 == 0) {
buffer[len++] = b0;
} else {
buffer[len] = b1;
buffer[len + 1] = b0;
len += 2;
}
}
}
// Appends all but the last byte to the sink. The last byte should be the 01 terminator.
void appendTo(SortKeyByteSink sink) {
assert (len > 0 && buffer[len - 1] == 1);
sink.Append(buffer, len - 1);
}
private boolean ensureCapacity(int appendCapacity) {
/* not used in Java -- if (!ok) {
return false;
} */
int newCapacity = 2 * buffer.length;
int altCapacity = len + 2 * appendCapacity;
if (newCapacity < altCapacity) {
newCapacity = altCapacity;
}
if (newCapacity < 200) {
newCapacity = 200;
}
byte[] newbuf = new byte[newCapacity];
System.arraycopy(buffer, 0, newbuf, 0, len);
buffer = newbuf;
return true;
}
}
private static SortKeyLevel getSortKeyLevel(int levels, int level) {
return (levels & level) != 0 ? new SortKeyLevel() : null;
}
private CollationKeys() {
} // no instantiation
// Secondary level: Compress up to 33 common weights as 05..25 or 25..45.
private static final int SEC_COMMON_LOW = Collation.COMMON_BYTE;
private static final int SEC_COMMON_MIDDLE = SEC_COMMON_LOW + 0x20;
static final int SEC_COMMON_HIGH = SEC_COMMON_LOW + 0x40; // read by CollationDataReader
private static final int SEC_COMMON_MAX_COUNT = 0x21;
// Case level, lowerFirst: Compress up to 7 common weights as 1..7 or 7..13.
private static final int CASE_LOWER_FIRST_COMMON_LOW = 1;
private static final int CASE_LOWER_FIRST_COMMON_MIDDLE = 7;
private static final int CASE_LOWER_FIRST_COMMON_HIGH = 13;
private static final int CASE_LOWER_FIRST_COMMON_MAX_COUNT = 7;
// Case level, upperFirst: Compress up to 13 common weights as 3..15.
private static final int CASE_UPPER_FIRST_COMMON_LOW = 3;
@SuppressWarnings("unused")
private static final int CASE_UPPER_FIRST_COMMON_HIGH = 15;
private static final int CASE_UPPER_FIRST_COMMON_MAX_COUNT = 13;
// Tertiary level only (no case): Compress up to 97 common weights as 05..65 or 65..C5.
private static final int TER_ONLY_COMMON_LOW = Collation.COMMON_BYTE;
private static final int TER_ONLY_COMMON_MIDDLE = TER_ONLY_COMMON_LOW + 0x60;
private static final int TER_ONLY_COMMON_HIGH = TER_ONLY_COMMON_LOW + 0xc0;
private static final int TER_ONLY_COMMON_MAX_COUNT = 0x61;
// Tertiary with case, lowerFirst: Compress up to 33 common weights as 05..25 or 25..45.
private static final int TER_LOWER_FIRST_COMMON_LOW = Collation.COMMON_BYTE;
private static final int TER_LOWER_FIRST_COMMON_MIDDLE = TER_LOWER_FIRST_COMMON_LOW + 0x20;
private static final int TER_LOWER_FIRST_COMMON_HIGH = TER_LOWER_FIRST_COMMON_LOW + 0x40;
private static final int TER_LOWER_FIRST_COMMON_MAX_COUNT = 0x21;
// Tertiary with case, upperFirst: Compress up to 33 common weights as 85..A5 or A5..C5.
private static final int TER_UPPER_FIRST_COMMON_LOW = Collation.COMMON_BYTE + 0x80;
private static final int TER_UPPER_FIRST_COMMON_MIDDLE = TER_UPPER_FIRST_COMMON_LOW + 0x20;
private static final int TER_UPPER_FIRST_COMMON_HIGH = TER_UPPER_FIRST_COMMON_LOW + 0x40;
private static final int TER_UPPER_FIRST_COMMON_MAX_COUNT = 0x21;
// Quaternary level: Compress up to 113 common weights as 1C..8C or 8C..FC.
private static final int QUAT_COMMON_LOW = 0x1c;
private static final int QUAT_COMMON_MIDDLE = QUAT_COMMON_LOW + 0x70;
private static final int QUAT_COMMON_HIGH = QUAT_COMMON_LOW + 0xE0;
private static final int QUAT_COMMON_MAX_COUNT = 0x71;
// Primary weights shifted to quaternary level must be encoded with
// a lead byte below the common-weight compression range.
private static final int QUAT_SHIFTED_LIMIT_BYTE = QUAT_COMMON_LOW - 1; // 0x1b
/**
* Map from collation strength (UColAttributeValue) to a mask of Collation.Level bits up to that
* strength, excluding the CASE_LEVEL which is independent of the strength, and excluding
* IDENTICAL_LEVEL which this function does not write.
*/
private static final int levelMasks[] = new int[] {
2, // UCOL_PRIMARY -> PRIMARY_LEVEL
6, // UCOL_SECONDARY -> up to SECONDARY_LEVEL
0x16, // UCOL_TERTIARY -> up to TERTIARY_LEVEL
0x36, // UCOL_QUATERNARY -> up to QUATERNARY_LEVEL
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0,
0x36 // UCOL_IDENTICAL -> up to QUATERNARY_LEVEL
};
/**
* Writes the sort key bytes for minLevel up to the iterator data's strength. Optionally writes
* the case level. Stops writing levels when callback.needToWrite(level) returns false.
* Separates levels with the LEVEL_SEPARATOR_BYTE but does not write a TERMINATOR_BYTE.
*/
public static void writeSortKeyUpToQuaternary(CollationIterator iter, boolean[] compressibleBytes,
CollationSettings settings, SortKeyByteSink sink, int minLevel, LevelCallback callback,
boolean preflight) {
int options = settings.options;
// Set of levels to process and write.
int levels = levelMasks[CollationSettings.getStrength(options)];
if ((options & CollationSettings.CASE_LEVEL) != 0) {
levels |= Collation.CASE_LEVEL_FLAG;
}
// Minus the levels below minLevel.
levels &= ~((1 << minLevel) - 1);
if (levels == 0) {
return;
}
long variableTop;
if ((options & CollationSettings.ALTERNATE_MASK) == 0) {
variableTop = 0;
} else {
// +1 so that we can use "<" and primary ignorables test out early.
variableTop = settings.variableTop + 1;
}
int tertiaryMask = CollationSettings.getTertiaryMask(options);
byte[] p234 = new byte[3];
SortKeyLevel cases = getSortKeyLevel(levels, Collation.CASE_LEVEL_FLAG);
SortKeyLevel secondaries = getSortKeyLevel(levels, Collation.SECONDARY_LEVEL_FLAG);
SortKeyLevel tertiaries = getSortKeyLevel(levels, Collation.TERTIARY_LEVEL_FLAG);
SortKeyLevel quaternaries = getSortKeyLevel(levels, Collation.QUATERNARY_LEVEL_FLAG);
long prevReorderedPrimary = 0; // 0==no compression
int commonCases = 0;
int commonSecondaries = 0;
int commonTertiaries = 0;
int commonQuaternaries = 0;
int prevSecondary = 0;
int secSegmentStart = 0;
for (;;) {
// No need to keep all CEs in the buffer when we write a sort key.
iter.clearCEsIfNoneRemaining();
long ce = iter.nextCE();
long p = ce >>> 32;
if (p < variableTop && p > Collation.MERGE_SEPARATOR_PRIMARY) {
// Variable CE, shift it to quaternary level.
// Ignore all following primary ignorables, and shift further variable CEs.
if (commonQuaternaries != 0) {
--commonQuaternaries;
while (commonQuaternaries >= QUAT_COMMON_MAX_COUNT) {
quaternaries.appendByte(QUAT_COMMON_MIDDLE);
commonQuaternaries -= QUAT_COMMON_MAX_COUNT;
}
// Shifted primary weights are lower than the common weight.
quaternaries.appendByte(QUAT_COMMON_LOW + commonQuaternaries);
commonQuaternaries = 0;
}
do {
if ((levels & Collation.QUATERNARY_LEVEL_FLAG) != 0) {
if (settings.hasReordering()) {
p = settings.reorder(p);
}
if (((int) p >>> 24) >= QUAT_SHIFTED_LIMIT_BYTE) {
// Prevent shifted primary lead bytes from
// overlapping with the common compression range.
quaternaries.appendByte(QUAT_SHIFTED_LIMIT_BYTE);
}
quaternaries.appendWeight32(p);
}
do {
ce = iter.nextCE();
p = ce >>> 32;
} while (p == 0);
} while (p < variableTop && p > Collation.MERGE_SEPARATOR_PRIMARY);
}
// ce could be primary ignorable, or NO_CE, or the merge separator,
// or a regular primary CE, but it is not variable.
// If ce==NO_CE, then write nothing for the primary level but
// terminate compression on all levels and then exit the loop.
if (p > Collation.NO_CE_PRIMARY && (levels & Collation.PRIMARY_LEVEL_FLAG) != 0) {
// Test the un-reordered primary for compressibility.
boolean isCompressible = compressibleBytes[(int) p >>> 24];
if(settings.hasReordering()) {
p = settings.reorder(p);
}
int p1 = (int) p >>> 24;
if (!isCompressible || p1 != ((int) prevReorderedPrimary >>> 24)) {
if (prevReorderedPrimary != 0) {
if (p < prevReorderedPrimary) {
// No primary compression terminator
// at the end of the level or merged segment.
if (p1 > Collation.MERGE_SEPARATOR_BYTE) {
sink.Append(Collation.PRIMARY_COMPRESSION_LOW_BYTE);
}
} else {
sink.Append(Collation.PRIMARY_COMPRESSION_HIGH_BYTE);
}
}
sink.Append(p1);
if(isCompressible) {
prevReorderedPrimary = p;
} else {
prevReorderedPrimary = 0;
}
}
byte p2 = (byte) (p >>> 16);
if (p2 != 0) {
p234[0] = p2;
p234[1] = (byte) (p >>> 8);
p234[2] = (byte) p;
sink.Append(p234, (p234[1] == 0) ? 1 : (p234[2] == 0) ? 2 : 3);
}
// Optimization for internalNextSortKeyPart():
// When the primary level overflows we can stop because we need not
// calculate (preflight) the whole sort key length.
if (!preflight && sink.Overflowed()) {
// not used in Java -- if (!sink.IsOk()) {
// Java porting note: U_MEMORY_ALLOCATION_ERROR is set here in
// C implementation. IsOk() in Java always returns true, so this
// is a dead code.
return;
}
}
int lower32 = (int) ce;
if (lower32 == 0) {
continue;
} // completely ignorable, no secondary/case/tertiary/quaternary
if ((levels & Collation.SECONDARY_LEVEL_FLAG) != 0) {
int s = lower32 >>> 16; // 16 bits
if (s == 0) {
// secondary ignorable
} else if (s == Collation.COMMON_WEIGHT16 &&
((options & CollationSettings.BACKWARD_SECONDARY) == 0 ||
p != Collation.MERGE_SEPARATOR_PRIMARY)) {
// s is a common secondary weight, and
// backwards-secondary is off or the ce is not the merge separator.
++commonSecondaries;
} else if ((options & CollationSettings.BACKWARD_SECONDARY) == 0) {
if (commonSecondaries != 0) {
--commonSecondaries;
while (commonSecondaries >= SEC_COMMON_MAX_COUNT) {
secondaries.appendByte(SEC_COMMON_MIDDLE);
commonSecondaries -= SEC_COMMON_MAX_COUNT;
}
int b;
if (s < Collation.COMMON_WEIGHT16) {
b = SEC_COMMON_LOW + commonSecondaries;
} else {
b = SEC_COMMON_HIGH - commonSecondaries;
}
secondaries.appendByte(b);
commonSecondaries = 0;
}
secondaries.appendWeight16(s);
} else {
if (commonSecondaries != 0) {
--commonSecondaries;
// Append reverse weights. The level will be re-reversed later.
int remainder = commonSecondaries % SEC_COMMON_MAX_COUNT;
int b;
if (prevSecondary < Collation.COMMON_WEIGHT16) {
b = SEC_COMMON_LOW + remainder;
} else {
b = SEC_COMMON_HIGH - remainder;
}
secondaries.appendByte(b);
commonSecondaries -= remainder;
// commonSecondaries is now a multiple of SEC_COMMON_MAX_COUNT.
while (commonSecondaries > 0) { // same as >= SEC_COMMON_MAX_COUNT
secondaries.appendByte(SEC_COMMON_MIDDLE);
commonSecondaries -= SEC_COMMON_MAX_COUNT;
}
// commonSecondaries == 0
}
if (0 < p && p <= Collation.MERGE_SEPARATOR_PRIMARY) {
// The backwards secondary level compares secondary weights backwards
// within segments separated by the merge separator (U+FFFE).
byte[] secs = secondaries.data();
int last = secondaries.length() - 1;
while (secSegmentStart < last) {
byte b = secs[secSegmentStart];
secs[secSegmentStart++] = secs[last];
secs[last--] = b;
}
secondaries.appendByte(p == Collation.NO_CE_PRIMARY ?
Collation.LEVEL_SEPARATOR_BYTE : Collation.MERGE_SEPARATOR_BYTE);
prevSecondary = 0;
secSegmentStart = secondaries.length();
} else {
secondaries.appendReverseWeight16(s);
prevSecondary = s;
}
}
}
if ((levels & Collation.CASE_LEVEL_FLAG) != 0) {
if ((CollationSettings.getStrength(options) == Collator.PRIMARY) ? p == 0
: (lower32 >>> 16) == 0) {
// Primary+caseLevel: Ignore case level weights of primary ignorables.
// Otherwise: Ignore case level weights of secondary ignorables.
// For details see the comments in the CollationCompare class.
} else {
int c = (lower32 >>> 8) & 0xff; // case bits & tertiary lead byte
assert ((c & 0xc0) != 0xc0);
if ((c & 0xc0) == 0 && c > Collation.LEVEL_SEPARATOR_BYTE) {
++commonCases;
} else {
if ((options & CollationSettings.UPPER_FIRST) == 0) {
// lowerFirst: Compress common weights to nibbles 1..7..13, mixed=14,
// upper=15.
// If there are only common (=lowest) weights in the whole level,
// then we need not write anything.
// Level length differences are handled already on the next-higher level.
if (commonCases != 0 &&
(c > Collation.LEVEL_SEPARATOR_BYTE || !cases.isEmpty())) {
--commonCases;
while (commonCases >= CASE_LOWER_FIRST_COMMON_MAX_COUNT) {
cases.appendByte(CASE_LOWER_FIRST_COMMON_MIDDLE << 4);
commonCases -= CASE_LOWER_FIRST_COMMON_MAX_COUNT;
}
int b;
if (c <= Collation.LEVEL_SEPARATOR_BYTE) {
b = CASE_LOWER_FIRST_COMMON_LOW + commonCases;
} else {
b = CASE_LOWER_FIRST_COMMON_HIGH - commonCases;
}
cases.appendByte(b << 4);
commonCases = 0;
}
if (c > Collation.LEVEL_SEPARATOR_BYTE) {
c = (CASE_LOWER_FIRST_COMMON_HIGH + (c >>> 6)) << 4; // 14 or 15
}
} else {
// upperFirst: Compress common weights to nibbles 3..15, mixed=2,
// upper=1.
// The compressed common case weights only go up from the "low" value
// because with upperFirst the common weight is the highest one.
if (commonCases != 0) {
--commonCases;
while (commonCases >= CASE_UPPER_FIRST_COMMON_MAX_COUNT) {
cases.appendByte(CASE_UPPER_FIRST_COMMON_LOW << 4);
commonCases -= CASE_UPPER_FIRST_COMMON_MAX_COUNT;
}
cases.appendByte((CASE_UPPER_FIRST_COMMON_LOW + commonCases) << 4);
commonCases = 0;
}
if (c > Collation.LEVEL_SEPARATOR_BYTE) {
c = (CASE_UPPER_FIRST_COMMON_LOW - (c >>> 6)) << 4; // 2 or 1
}
}
// c is a separator byte 01,
// or a left-shifted nibble 0x10, 0x20, ... 0xf0.
cases.appendByte(c);
}
}
}
if ((levels & Collation.TERTIARY_LEVEL_FLAG) != 0) {
int t = lower32 & tertiaryMask;
assert ((lower32 & 0xc000) != 0xc000);
if (t == Collation.COMMON_WEIGHT16) {
++commonTertiaries;
} else if ((tertiaryMask & 0x8000) == 0) {
// Tertiary weights without case bits.
// Move lead bytes 06..3F to C6..FF for a large common-weight range.
if (commonTertiaries != 0) {
--commonTertiaries;
while (commonTertiaries >= TER_ONLY_COMMON_MAX_COUNT) {
tertiaries.appendByte(TER_ONLY_COMMON_MIDDLE);
commonTertiaries -= TER_ONLY_COMMON_MAX_COUNT;
}
int b;
if (t < Collation.COMMON_WEIGHT16) {
b = TER_ONLY_COMMON_LOW + commonTertiaries;
} else {
b = TER_ONLY_COMMON_HIGH - commonTertiaries;
}
tertiaries.appendByte(b);
commonTertiaries = 0;
}
if (t > Collation.COMMON_WEIGHT16) {
t += 0xc000;
}
tertiaries.appendWeight16(t);
} else if ((options & CollationSettings.UPPER_FIRST) == 0) {
// Tertiary weights with caseFirst=lowerFirst.
// Move lead bytes 06..BF to 46..FF for the common-weight range.
if (commonTertiaries != 0) {
--commonTertiaries;
while (commonTertiaries >= TER_LOWER_FIRST_COMMON_MAX_COUNT) {
tertiaries.appendByte(TER_LOWER_FIRST_COMMON_MIDDLE);
commonTertiaries -= TER_LOWER_FIRST_COMMON_MAX_COUNT;
}
int b;
if (t < Collation.COMMON_WEIGHT16) {
b = TER_LOWER_FIRST_COMMON_LOW + commonTertiaries;
} else {
b = TER_LOWER_FIRST_COMMON_HIGH - commonTertiaries;
}
tertiaries.appendByte(b);
commonTertiaries = 0;
}
if (t > Collation.COMMON_WEIGHT16) {
t += 0x4000;
}
tertiaries.appendWeight16(t);
} else {
// Tertiary weights with caseFirst=upperFirst.
// Do not change the artificial uppercase weight of a tertiary CE (0.0.ut),
// to keep tertiary CEs well-formed.
// Their case+tertiary weights must be greater than those of
// primary and secondary CEs.
//
// Separator 01 -> 01 (unchanged)
// Lowercase 02..04 -> 82..84 (includes uncased)
// Common weight 05 -> 85..C5 (common-weight compression range)
// Lowercase 06..3F -> C6..FF
// Mixed case 42..7F -> 42..7F
// Uppercase 82..BF -> 02..3F
// Tertiary CE 86..BF -> C6..FF
if (t <= Collation.NO_CE_WEIGHT16) {
// Keep separators unchanged.
} else if ((lower32 >>> 16) != 0) {
// Invert case bits of primary & secondary CEs.
t ^= 0xc000;
if (t < (TER_UPPER_FIRST_COMMON_HIGH << 8)) {
t -= 0x4000;
}
} else {
// Keep uppercase bits of tertiary CEs.
assert (0x8600 <= t && t <= 0xbfff);
t += 0x4000;
}
if (commonTertiaries != 0) {
--commonTertiaries;
while (commonTertiaries >= TER_UPPER_FIRST_COMMON_MAX_COUNT) {
tertiaries.appendByte(TER_UPPER_FIRST_COMMON_MIDDLE);
commonTertiaries -= TER_UPPER_FIRST_COMMON_MAX_COUNT;
}
int b;
if (t < (TER_UPPER_FIRST_COMMON_LOW << 8)) {
b = TER_UPPER_FIRST_COMMON_LOW + commonTertiaries;
} else {
b = TER_UPPER_FIRST_COMMON_HIGH - commonTertiaries;
}
tertiaries.appendByte(b);
commonTertiaries = 0;
}
tertiaries.appendWeight16(t);
}
}
if ((levels & Collation.QUATERNARY_LEVEL_FLAG) != 0) {
int q = lower32 & 0xffff;
if ((q & 0xc0) == 0 && q > Collation.NO_CE_WEIGHT16) {
++commonQuaternaries;
} else if (q == Collation.NO_CE_WEIGHT16
&& (options & CollationSettings.ALTERNATE_MASK) == 0
&& quaternaries.isEmpty()) {
// If alternate=non-ignorable and there are only common quaternary weights,
// then we need not write anything.
// The only weights greater than the merge separator and less than the common
// weight
// are shifted primary weights, which are not generated for
// alternate=non-ignorable.
// There are also exactly as many quaternary weights as tertiary weights,
// so level length differences are handled already on tertiary level.
// Any above-common quaternary weight will compare greater regardless.
quaternaries.appendByte(Collation.LEVEL_SEPARATOR_BYTE);
} else {
if (q == Collation.NO_CE_WEIGHT16) {
q = Collation.LEVEL_SEPARATOR_BYTE;
} else {
q = 0xfc + ((q >>> 6) & 3);
}
if (commonQuaternaries != 0) {
--commonQuaternaries;
while (commonQuaternaries >= QUAT_COMMON_MAX_COUNT) {
quaternaries.appendByte(QUAT_COMMON_MIDDLE);
commonQuaternaries -= QUAT_COMMON_MAX_COUNT;
}
int b;
if (q < QUAT_COMMON_LOW) {
b = QUAT_COMMON_LOW + commonQuaternaries;
} else {
b = QUAT_COMMON_HIGH - commonQuaternaries;
}
quaternaries.appendByte(b);
commonQuaternaries = 0;
}
quaternaries.appendByte(q);
}
}
if ((lower32 >>> 24) == Collation.LEVEL_SEPARATOR_BYTE) {
break;
} // ce == NO_CE
}
// Append the beyond-primary levels.
// not used in Java -- boolean ok = true;
if ((levels & Collation.SECONDARY_LEVEL_FLAG) != 0) {
if (!callback.needToWrite(Collation.SECONDARY_LEVEL)) {
return;
}
// not used in Java -- ok &= secondaries.isOk();
sink.Append(Collation.LEVEL_SEPARATOR_BYTE);
secondaries.appendTo(sink);
}
if ((levels & Collation.CASE_LEVEL_FLAG) != 0) {
if (!callback.needToWrite(Collation.CASE_LEVEL)) {
return;
}
// not used in Java -- ok &= cases.isOk();
sink.Append(Collation.LEVEL_SEPARATOR_BYTE);
// Write pairs of nibbles as bytes, except separator bytes as themselves.
int length = cases.length() - 1; // Ignore the trailing NO_CE.
byte b = 0;
for (int i = 0; i < length; ++i) {
byte c = cases.getAt(i);
assert ((c & 0xf) == 0 && c != 0);
if (b == 0) {
b = c;
} else {
sink.Append(b | ((c >> 4) & 0xf));
b = 0;
}
}
if (b != 0) {
sink.Append(b);
}
}
if ((levels & Collation.TERTIARY_LEVEL_FLAG) != 0) {
if (!callback.needToWrite(Collation.TERTIARY_LEVEL)) {
return;
}
// not used in Java -- ok &= tertiaries.isOk();
sink.Append(Collation.LEVEL_SEPARATOR_BYTE);
tertiaries.appendTo(sink);
}
if ((levels & Collation.QUATERNARY_LEVEL_FLAG) != 0) {
if (!callback.needToWrite(Collation.QUATERNARY_LEVEL)) {
return;
}
// not used in Java -- ok &= quaternaries.isOk();
sink.Append(Collation.LEVEL_SEPARATOR_BYTE);
quaternaries.appendTo(sink);
}
// not used in Java -- if (!ok || !sink.IsOk()) {
// Java porting note: U_MEMORY_ALLOCATION_ERROR is set here in
// C implementation. IsOk() in Java always returns true, so this
// is a dead code.
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy