All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.genetics.NPointCrossover Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.genetics;

import java.util.ArrayList;
import java.util.List;

import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.random.RandomGenerator;

/**
 * N-point crossover policy. For each iteration a random crossover point is
 * selected and the first part from each parent is copied to the corresponding
 * child, and the second parts are copied crosswise.
 *
 * Example (2-point crossover):
 * 
 * -C- denotes a crossover point
 *           -C-       -C-                         -C-        -C-
 * p1 = (1 0  | 1 0 0 1 | 0 1 1)    X    p2 = (0 1  | 1 0 1 0  | 1 1 1)
 *      \----/ \-------/ \-----/              \----/ \--------/ \-----/
 *        ||      (*)       ||                  ||      (**)       ||
 *        VV      (**)      VV                  VV      (*)        VV
 *      /----\ /--------\ /-----\             /----\ /--------\ /-----\
 * c1 = (1 0  | 1 0 1 0  | 0 1 1)    X   c2 = (0 1  | 1 0 0 1  | 0 1 1)
 * 
* * This policy works only on {@link AbstractListChromosome}, and therefore it * is parameterized by T. Moreover, the chromosomes must have same lengths. * * @param generic type of the {@link AbstractListChromosome}s for crossover * @since 3.1 */ public class NPointCrossover implements CrossoverPolicy { /** The number of crossover points. */ private final int crossoverPoints; /** * Creates a new {@link NPointCrossover} policy using the given number of points. *

* Note: the number of crossover points must be < chromosome length - 1. * This condition can only be checked at runtime, as the chromosome length is not known in advance. * * @param crossoverPoints the number of crossover points * @throws NotStrictlyPositiveException if the number of {@code crossoverPoints} is not strictly positive */ public NPointCrossover(final int crossoverPoints) throws NotStrictlyPositiveException { if (crossoverPoints <= 0) { throw new NotStrictlyPositiveException(crossoverPoints); } this.crossoverPoints = crossoverPoints; } /** * Returns the number of crossover points used by this {@link CrossoverPolicy}. * * @return the number of crossover points */ public int getCrossoverPoints() { return crossoverPoints; } /** * Performs a N-point crossover. N random crossover points are selected and are used * to divide the parent chromosomes into segments. The segments are copied in alternate * order from the two parents to the corresponding child chromosomes. * * Example (2-point crossover): *

     * -C- denotes a crossover point
     *           -C-       -C-                         -C-        -C-
     * p1 = (1 0  | 1 0 0 1 | 0 1 1)    X    p2 = (0 1  | 1 0 1 0  | 1 1 1)
     *      \----/ \-------/ \-----/              \----/ \--------/ \-----/
     *        ||      (*)       ||                  ||      (**)       ||
     *        VV      (**)      VV                  VV      (*)        VV
     *      /----\ /--------\ /-----\             /----\ /--------\ /-----\
     * c1 = (1 0  | 1 0 1 0  | 0 1 1)    X   c2 = (0 1  | 1 0 0 1  | 0 1 1)
     * 
* * @param first first parent (p1) * @param second second parent (p2) * @return pair of two children (c1,c2) * @throws MathIllegalArgumentException iff one of the chromosomes is * not an instance of {@link AbstractListChromosome} * @throws DimensionMismatchException if the length of the two chromosomes is different */ @SuppressWarnings("unchecked") // OK because of instanceof checks public ChromosomePair crossover(final Chromosome first, final Chromosome second) throws DimensionMismatchException, MathIllegalArgumentException { if (!(first instanceof AbstractListChromosome && second instanceof AbstractListChromosome)) { throw new MathIllegalArgumentException(LocalizedFormats.INVALID_FIXED_LENGTH_CHROMOSOME); } return mate((AbstractListChromosome) first, (AbstractListChromosome) second); } /** * Helper for {@link #crossover(Chromosome, Chromosome)}. Performs the actual crossover. * * @param first the first chromosome * @param second the second chromosome * @return the pair of new chromosomes that resulted from the crossover * @throws DimensionMismatchException if the length of the two chromosomes is different * @throws NumberIsTooLargeException if the number of crossoverPoints is too large for the actual chromosomes */ private ChromosomePair mate(final AbstractListChromosome first, final AbstractListChromosome second) throws DimensionMismatchException, NumberIsTooLargeException { final int length = first.getLength(); if (length != second.getLength()) { throw new DimensionMismatchException(second.getLength(), length); } if (crossoverPoints >= length) { throw new NumberIsTooLargeException(crossoverPoints, length, false); } // array representations of the parents final List parent1Rep = first.getRepresentation(); final List parent2Rep = second.getRepresentation(); // and of the children final List child1Rep = new ArrayList(length); final List child2Rep = new ArrayList(length); final RandomGenerator random = GeneticAlgorithm.getRandomGenerator(); List c1 = child1Rep; List c2 = child2Rep; int remainingPoints = crossoverPoints; int lastIndex = 0; for (int i = 0; i < crossoverPoints; i++, remainingPoints--) { // select the next crossover point at random final int crossoverIndex = 1 + lastIndex + random.nextInt(length - lastIndex - remainingPoints); // copy the current segment for (int j = lastIndex; j < crossoverIndex; j++) { c1.add(parent1Rep.get(j)); c2.add(parent2Rep.get(j)); } // swap the children for the next segment List tmp = c1; c1 = c2; c2 = tmp; lastIndex = crossoverIndex; } // copy the last segment for (int j = lastIndex; j < length; j++) { c1.add(parent1Rep.get(j)); c2.add(parent2Rep.get(j)); } return new ChromosomePair(first.newFixedLengthChromosome(child1Rep), second.newFixedLengthChromosome(child2Rep)); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy