All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.ode.FirstOrderFieldDifferentialEquations Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode;

import org.apache.commons.math3.RealFieldElement;

/** This interface represents a first order differential equations set.
 *
 * 

This interface should be implemented by all real first order * differential equation problems before they can be handled by the * integrators {@link FirstOrderIntegrator#integrate} method.

* *

A first order differential equations problem, as seen by an * integrator is the time derivative dY/dt of a state * vector Y, both being one dimensional arrays. From the * integrator point of view, this derivative depends only on the * current time t and on the state vector * Y.

* *

For real problems, the derivative depends also on parameters * that do not belong to the state vector (dynamical model constants * for example). These constants are completely outside of the scope * of this interface, the classes that implement it are allowed to * handle them as they want.

* * @see FirstOrderFieldIntegrator * * @param the type of the field elements * @since 3.6 */ public interface FirstOrderFieldDifferentialEquations> { /** Get the dimension of the problem. * @return dimension of the problem */ int getDimension(); /** Initialize equations at the start of an ODE integration. *

* This method is called once at the start of the integration. It * may be used by the equations to initialize some internal data * if needed. *

* @param t0 value of the independent time variable at integration start * @param y0 array containing the value of the state vector at integration start * @param finalTime target time for the integration */ void init(T t0, T[] y0, T finalTime); /** Get the current time derivative of the state vector. * @param t current value of the independent time variable * @param y array containing the current value of the state vector * @return time derivative of the state vector */ T[] computeDerivatives(T t, T[] y); }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy