 
                        
        
                        
        org.apache.commons.math3.ode.nonstiff.AdamsMoultonFieldIntegrator Maven / Gradle / Ivy
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.ode.nonstiff;
import java.util.Arrays;
import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.NoBracketingException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.linear.Array2DRowFieldMatrix;
import org.apache.commons.math3.linear.FieldMatrixPreservingVisitor;
import org.apache.commons.math3.ode.FieldExpandableODE;
import org.apache.commons.math3.ode.FieldODEState;
import org.apache.commons.math3.ode.FieldODEStateAndDerivative;
import org.apache.commons.math3.util.MathArrays;
import org.apache.commons.math3.util.MathUtils;
/**
 * This class implements implicit Adams-Moulton integrators for Ordinary
 * Differential Equations.
 *
 * Adams-Moulton methods (in fact due to Adams alone) are implicit
 * multistep ODE solvers. This implementation is a variation of the classical
 * one: it uses adaptive stepsize to implement error control, whereas
 * classical implementations are fixed step size. The value of state vector
 * at step n+1 is a simple combination of the value at step n and of the
 * derivatives at steps n+1, n, n-1 ... Since y'n+1 is needed to
 * compute yn+1, another method must be used to compute a first
 * estimate of yn+1, then compute y'n+1, then compute
 * a final estimate of yn+1 using the following formulas. Depending
 * on the number k of previous steps one wants to use for computing the next
 * value, different formulas are available for the final estimate:
 * 
 *   - k = 1: yn+1 = yn + h y'n+1*
- k = 2: yn+1 = yn + h (y'n+1+y'n)/2*
- k = 3: yn+1 = yn + h (5y'n+1+8y'n-y'n-1)/12*
- k = 4: yn+1 = yn + h (9y'n+1+19y'n-5y'n-1+y'n-2)/24*
- ...*
*
 *A k-steps Adams-Moulton method is of order k+1.
 *
 * Implementation details
 *
 * We define scaled derivatives si(n) at step n as:
 * 
 * s1(n) = h y'n for first derivative
 * s2(n) = h2/2 y''n for second derivative
 * s3(n) = h3/6 y'''n for third derivative
 * ...
 * sk(n) = hk/k! y(k)n for kth derivative
 * 
 *
 * The definitions above use the classical representation with several previous first
 * derivatives. Lets define
 * 
 *   qn = [ s1(n-1) s1(n-2) ... s1(n-(k-1)) ]T
 * 
 * (we omit the k index in the notation for clarity). With these definitions,
 * Adams-Moulton methods can be written:
 * 
 *   - k = 1: yn+1 = yn + s1(n+1)*
- k = 2: yn+1 = yn + 1/2 s1(n+1) + [ 1/2 ] qn+1*
- k = 3: yn+1 = yn + 5/12 s1(n+1) + [ 8/12 -1/12 ] qn+1*
- k = 4: yn+1 = yn + 9/24 s1(n+1) + [ 19/24 -5/24 1/24 ] qn+1*
- ...*
*
 *Instead of using the classical representation with first derivatives only (yn,
 * s1(n+1) and qn+1), our implementation uses the Nordsieck vector with
 * higher degrees scaled derivatives all taken at the same step (yn, s1(n)
 * and rn) where rn is defined as:
 * 
 * rn = [ s2(n), s3(n) ... sk(n) ]T
 * 
 * (here again we omit the k index in the notation for clarity)
 * 
 *
 * Taylor series formulas show that for any index offset i, s1(n-i) can be
 * computed from s1(n), s2(n) ... sk(n), the formula being exact
 * for degree k polynomials.
 * 
 * s1(n-i) = s1(n) + ∑j>0 (j+1) (-i)j sj+1(n)
 * 
 * The previous formula can be used with several values for i to compute the transform between
 * classical representation and Nordsieck vector. The transform between rn
 * and qn resulting from the Taylor series formulas above is:
 * 
 * qn = s1(n) u + P rn
 * 
 * where u is the [ 1 1 ... 1 ]T vector and P is the (k-1)×(k-1) matrix built
 * with the (j+1) (-i)j terms with i being the row number starting from 1 and j being
 * the column number starting from 1:
 * 
 *        [  -2   3   -4    5  ... ]
 *        [  -4  12  -32   80  ... ]
 *   P =  [  -6  27 -108  405  ... ]
 *        [  -8  48 -256 1280  ... ]
 *        [          ...           ]
 * 
 *
 * Using the Nordsieck vector has several advantages:
 * 
 *   - it greatly simplifies step interpolation as the interpolator mainly applies
 *   Taylor series formulas,*
- it simplifies step changes that occur when discrete events that truncate
 *   the step are triggered,*
- it allows to extend the methods in order to support adaptive stepsize.*
*
 *The predicted Nordsieck vector at step n+1 is computed from the Nordsieck vector at step
 * n as follows:
 * 
 *   - Yn+1 = yn + s1(n) + uT rn*
- S1(n+1) = h f(tn+1, Yn+1)*
- Rn+1 = (s1(n) - S1(n+1)) P-1 u + P-1 A P rn*
* where A is a rows shifting matrix (the lower left part is an identity matrix):
 *
 *        [ 0 0   ...  0 0 | 0 ]
 *        [ ---------------+---]
 *        [ 1 0   ...  0 0 | 0 ]
 *    A = [ 0 1   ...  0 0 | 0 ]
 *        [       ...      | 0 ]
 *        [ 0 0   ...  1 0 | 0 ]
 *        [ 0 0   ...  0 1 | 0 ]
 * 
 * From this predicted vector, the corrected vector is computed as follows:
 * 
 *   - yn+1 = yn + S1(n+1) + [ -1 +1 -1 +1 ... ±1 ] rn+1*
- s1(n+1) = h f(tn+1, yn+1)*
- rn+1 = Rn+1 + (s1(n+1) - S1(n+1)) P-1 u*
* where the upper case Yn+1, S1(n+1) and Rn+1 represent the
 * predicted states whereas the lower case yn+1, sn+1 and rn+1
 * represent the corrected states.
 *
 *The P-1u vector and the P-1 A P matrix do not depend on the state,
 * they only depend on k and therefore are precomputed once for all.
 *
 * @param  the type of the field elements
 * @since 3.6
 */
public class AdamsMoultonFieldIntegrator> extends AdamsFieldIntegrator {
    /** Integrator method name. */
    private static final String METHOD_NAME = "Adams-Moulton";
    /**
     * Build an Adams-Moulton integrator with the given order and error control parameters.
     * @param field field to which the time and state vector elements belong
     * @param nSteps number of steps of the method excluding the one being computed
     * @param minStep minimal step (sign is irrelevant, regardless of
     * integration direction, forward or backward), the last step can
     * be smaller than this
     * @param maxStep maximal step (sign is irrelevant, regardless of
     * integration direction, forward or backward), the last step can
     * be smaller than this
     * @param scalAbsoluteTolerance allowed absolute error
     * @param scalRelativeTolerance allowed relative error
     * @exception NumberIsTooSmallException if order is 1 or less
     */
    public AdamsMoultonFieldIntegrator(final Field field, final int nSteps,
                                       final double minStep, final double maxStep,
                                       final double scalAbsoluteTolerance,
                                       final double scalRelativeTolerance)
        throws NumberIsTooSmallException {
        super(field, METHOD_NAME, nSteps, nSteps + 1, minStep, maxStep,
              scalAbsoluteTolerance, scalRelativeTolerance);
    }
    /**
     * Build an Adams-Moulton integrator with the given order and error control parameters.
     * @param field field to which the time and state vector elements belong
     * @param nSteps number of steps of the method excluding the one being computed
     * @param minStep minimal step (sign is irrelevant, regardless of
     * integration direction, forward or backward), the last step can
     * be smaller than this
     * @param maxStep maximal step (sign is irrelevant, regardless of
     * integration direction, forward or backward), the last step can
     * be smaller than this
     * @param vecAbsoluteTolerance allowed absolute error
     * @param vecRelativeTolerance allowed relative error
     * @exception IllegalArgumentException if order is 1 or less
     */
    public AdamsMoultonFieldIntegrator(final Field field, final int nSteps,
                                       final double minStep, final double maxStep,
                                       final double[] vecAbsoluteTolerance,
                                       final double[] vecRelativeTolerance)
        throws IllegalArgumentException {
        super(field, METHOD_NAME, nSteps, nSteps + 1, minStep, maxStep,
              vecAbsoluteTolerance, vecRelativeTolerance);
    }
    /** {@inheritDoc} */
    @Override
    public FieldODEStateAndDerivative integrate(final FieldExpandableODE equations,
                                                   final FieldODEState initialState,
                                                   final T finalTime)
        throws NumberIsTooSmallException, DimensionMismatchException,
               MaxCountExceededException, NoBracketingException {
        sanityChecks(initialState, finalTime);
        final T   t0 = initialState.getTime();
        final T[] y  = equations.getMapper().mapState(initialState);
        setStepStart(initIntegration(equations, t0, y, finalTime));
        final boolean forward = finalTime.subtract(initialState.getTime()).getReal() > 0;
        // compute the initial Nordsieck vector using the configured starter integrator
        start(equations, getStepStart(), finalTime);
        // reuse the step that was chosen by the starter integrator
        FieldODEStateAndDerivative stepStart = getStepStart();
        FieldODEStateAndDerivative stepEnd   =
                        AdamsFieldStepInterpolator.taylor(stepStart,
                                                          stepStart.getTime().add(getStepSize()),
                                                          getStepSize(), scaled, nordsieck);
        // main integration loop
        setIsLastStep(false);
        do {
            T[] predictedY = null;
            final T[] predictedScaled = MathArrays.buildArray(getField(), y.length);
            Array2DRowFieldMatrix predictedNordsieck = null;
            T error = getField().getZero().add(10);
            while (error.subtract(1.0).getReal() >= 0.0) {
                // predict a first estimate of the state at step end (P in the PECE sequence)
                predictedY = stepEnd.getState();
                // evaluate a first estimate of the derivative (first E in the PECE sequence)
                final T[] yDot = computeDerivatives(stepEnd.getTime(), predictedY);
                // update Nordsieck vector
                for (int j = 0; j < predictedScaled.length; ++j) {
                    predictedScaled[j] = getStepSize().multiply(yDot[j]);
                }
                predictedNordsieck = updateHighOrderDerivativesPhase1(nordsieck);
                updateHighOrderDerivativesPhase2(scaled, predictedScaled, predictedNordsieck);
                // apply correction (C in the PECE sequence)
                error = predictedNordsieck.walkInOptimizedOrder(new Corrector(y, predictedScaled, predictedY));
                if (error.subtract(1.0).getReal() >= 0.0) {
                    // reject the step and attempt to reduce error by stepsize control
                    final T factor = computeStepGrowShrinkFactor(error);
                    rescale(filterStep(getStepSize().multiply(factor), forward, false));
                    stepEnd = AdamsFieldStepInterpolator.taylor(getStepStart(),
                                                                getStepStart().getTime().add(getStepSize()),
                                                                getStepSize(),
                                                                scaled,
                                                                nordsieck);
                }
            }
            // evaluate a final estimate of the derivative (second E in the PECE sequence)
            final T[] correctedYDot = computeDerivatives(stepEnd.getTime(), predictedY);
            // update Nordsieck vector
            final T[] correctedScaled = MathArrays.buildArray(getField(), y.length);
            for (int j = 0; j < correctedScaled.length; ++j) {
                correctedScaled[j] = getStepSize().multiply(correctedYDot[j]);
            }
            updateHighOrderDerivativesPhase2(predictedScaled, correctedScaled, predictedNordsieck);
            // discrete events handling
            stepEnd = new FieldODEStateAndDerivative(stepEnd.getTime(), predictedY, correctedYDot);
            setStepStart(acceptStep(new AdamsFieldStepInterpolator(getStepSize(), stepEnd,
                                                                      correctedScaled, predictedNordsieck, forward,
                                                                      getStepStart(), stepEnd,
                                                                      equations.getMapper()),
                                    finalTime));
            scaled    = correctedScaled;
            nordsieck = predictedNordsieck;
            if (!isLastStep()) {
                System.arraycopy(predictedY, 0, y, 0, y.length);
                if (resetOccurred()) {
                    // some events handler has triggered changes that
                    // invalidate the derivatives, we need to restart from scratch
                    start(equations, getStepStart(), finalTime);
                }
                // stepsize control for next step
                final T  factor     = computeStepGrowShrinkFactor(error);
                final T  scaledH    = getStepSize().multiply(factor);
                final T  nextT      = getStepStart().getTime().add(scaledH);
                final boolean nextIsLast = forward ?
                                           nextT.subtract(finalTime).getReal() >= 0 :
                                           nextT.subtract(finalTime).getReal() <= 0;
                T hNew = filterStep(scaledH, forward, nextIsLast);
                final T  filteredNextT      = getStepStart().getTime().add(hNew);
                final boolean filteredNextIsLast = forward ?
                                                   filteredNextT.subtract(finalTime).getReal() >= 0 :
                                                   filteredNextT.subtract(finalTime).getReal() <= 0;
                if (filteredNextIsLast) {
                    hNew = finalTime.subtract(getStepStart().getTime());
                }
                rescale(hNew);
                stepEnd = AdamsFieldStepInterpolator.taylor(getStepStart(), getStepStart().getTime().add(getStepSize()),
                                                            getStepSize(), scaled, nordsieck);
            }
        } while (!isLastStep());
        final FieldODEStateAndDerivative finalState = getStepStart();
        setStepStart(null);
        setStepSize(null);
        return finalState;
    }
    /** Corrector for current state in Adams-Moulton method.
     * 
     * This visitor implements the Taylor series formula:
     * 
     * Yn+1 = yn + s1(n+1) + [ -1 +1 -1 +1 ... ±1 ] rn+1
     * 
     * 
     */
    private class Corrector implements FieldMatrixPreservingVisitor {
        /** Previous state. */
        private final T[] previous;
        /** Current scaled first derivative. */
        private final T[] scaled;
        /** Current state before correction. */
        private final T[] before;
        /** Current state after correction. */
        private final T[] after;
        /** Simple constructor.
         * @param previous previous state
         * @param scaled current scaled first derivative
         * @param state state to correct (will be overwritten after visit)
         */
        Corrector(final T[] previous, final T[] scaled, final T[] state) {
            this.previous = previous;
            this.scaled   = scaled;
            this.after    = state;
            this.before   = state.clone();
        }
        /** {@inheritDoc} */
        public void start(int rows, int columns,
                          int startRow, int endRow, int startColumn, int endColumn) {
            Arrays.fill(after, getField().getZero());
        }
        /** {@inheritDoc} */
        public void visit(int row, int column, T value) {
            if ((row & 0x1) == 0) {
                after[column] = after[column].subtract(value);
            } else {
                after[column] = after[column].add(value);
            }
        }
        /**
         * End visiting the Nordsieck vector.
         * The correction is used to control stepsize. So its amplitude is
         * considered to be an error, which must be normalized according to
         * error control settings. If the normalized value is greater than 1,
         * the correction was too large and the step must be rejected.
         * @return the normalized correction, if greater than 1, the step
         * must be rejected
         */
        public T end() {
            T error = getField().getZero();
            for (int i = 0; i < after.length; ++i) {
                after[i] = after[i].add(previous[i].add(scaled[i]));
                if (i < mainSetDimension) {
                    final T yScale = MathUtils.max(previous[i].abs(), after[i].abs());
                    final T tol = (vecAbsoluteTolerance == null) ?
                                  yScale.multiply(scalRelativeTolerance).add(scalAbsoluteTolerance) :
                                  yScale.multiply(vecRelativeTolerance[i]).add(vecAbsoluteTolerance[i]);
                    final T ratio  = after[i].subtract(before[i]).divide(tol); // (corrected-predicted)/tol
                    error = error.add(ratio.multiply(ratio));
                }
            }
            return error.divide(mainSetDimension).sqrt();
        }
    }
}