com.ibm.icu.impl.OlsonTimeZone Maven / Gradle / Ivy
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html#License
/*
*******************************************************************************
* Copyright (C) 2005-2016, International Business Machines Corporation and
* others. All Rights Reserved.
*******************************************************************************
*/
package com.ibm.icu.impl;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.util.Arrays;
import java.util.Date;
import java.util.MissingResourceException;
import com.ibm.icu.util.AnnualTimeZoneRule;
import com.ibm.icu.util.BasicTimeZone;
import com.ibm.icu.util.Calendar;
import com.ibm.icu.util.DateTimeRule;
import com.ibm.icu.util.GregorianCalendar;
import com.ibm.icu.util.InitialTimeZoneRule;
import com.ibm.icu.util.SimpleTimeZone;
import com.ibm.icu.util.TimeArrayTimeZoneRule;
import com.ibm.icu.util.TimeZone;
import com.ibm.icu.util.TimeZoneRule;
import com.ibm.icu.util.TimeZoneTransition;
import com.ibm.icu.util.UResourceBundle;
/**
* A time zone based on the Olson tz database. Olson time zones change
* behavior over time. The raw offset, rules, presence or absence of
* daylight savings time, and even the daylight savings amount can all
* vary.
*
* This class uses a resource bundle named "zoneinfo". Zoneinfo is a
* table containing different kinds of resources. In several places,
* zones are referred to using integers. A zone's integer is a number
* from 0..n-1, where n is the number of zones, with the zones sorted
* in lexicographic order.
*
* 1. Zones. These have keys corresponding to the Olson IDs, e.g.,
* "Asia/Shanghai". Each resource describes the behavior of the given
* zone. Zones come in two different formats.
*
* a. Zone (table). A zone is a table resource contains several
* type of resources below:
*
* - typeOffsets:intvector (Required)
*
* Sets of UTC raw/dst offset pairs in seconds. Entries at
* 2n represents raw offset and 2n+1 represents dst offset
* paired with the raw offset at 2n. The very first pair represents
* the initial zone offset (before the first transition) always.
*
* - trans:intvector (Optional)
*
* List of transition times represented by 32bit seconds from the
* epoch (1970-01-01T00:00Z) in ascending order.
*
* - transPre32/transPost32:intvector (Optional)
*
* List of transition times before/after 32bit minimum seconds.
* Each time is represented by a pair of 32bit integer.
*
* - typeMap:bin (Optional)
*
* Array of bytes representing the mapping between each transition
* time (transPre32/trans/transPost32) and its corresponding offset
* data (typeOffsets).
*
* - finalRule:string (Optional)
*
* If a recurrent transition rule is applicable to a zone forever
* after the final transition time, finalRule represents the rule
* in Rules data.
*
* - finalRaw:int (Optional)
*
* When finalRule is available, finalRaw is required and specifies
* the raw (base) offset of the rule.
*
* - finalYear:int (Optional)
*
* When finalRule is available, finalYear is required and specifies
* the start year of the rule.
*
* - links:intvector (Optional)
*
* When this zone data is shared with other zones, links specifies
* all zones including the zone itself. Each zone is referenced by
* integer index.
*
* b. Link (int, length 1). A link zone is an int resource. The
* integer is the zone number of the target zone. The key of this
* resource is an alternate name for the target zone. This data
* is corresponding to Link data in the tz database.
*
*
* 2. Rules. These have keys corresponding to the Olson rule IDs,
* with an underscore prepended, e.g., "_EU". Each resource describes
* the behavior of the given rule using an intvector, containing the
* onset list, the cessation list, and the DST savings. The onset and
* cessation lists consist of the month, dowim, dow, time, and time
* mode. The end result is that the 11 integers describing the rule
* can be passed directly into the SimpleTimeZone 13-argument
* constructor (the other two arguments will be the raw offset, taken
* from the complex zone element 5, and the ID string, which is not
* used), with the times and the DST savings multiplied by 1000 to
* scale from seconds to milliseconds.
*
* 3. Regions. An array specifies mapping between zones and regions.
* Each item is either a 2-letter ISO country code or "001"
* (UN M.49 - World). This data is generated from "zone.tab"
* in the tz database.
*/
public class OlsonTimeZone extends BasicTimeZone {
// Generated by serialver from JDK 1.4.1_01
static final long serialVersionUID = -6281977362477515376L;
/* (non-Javadoc)
* @see com.ibm.icu.util.TimeZone#getOffset(int, int, int, int, int, int)
*/
@Override
public int getOffset(int era, int year, int month, int day, int dayOfWeek, int milliseconds) {
if (month < Calendar.JANUARY || month > Calendar.DECEMBER) {
throw new IllegalArgumentException("Month is not in the legal range: " +month);
} else {
return getOffset(era, year, month, day, dayOfWeek, milliseconds, Grego.monthLength(year, month));
}
}
/**
* TimeZone API.
*/
public int getOffset(int era, int year, int month,int dom, int dow, int millis, int monthLength){
if ((era != GregorianCalendar.AD && era != GregorianCalendar.BC)
|| month < Calendar.JANUARY
|| month > Calendar.DECEMBER
|| dom < 1
|| dom > monthLength
|| dow < Calendar.SUNDAY
|| dow > Calendar.SATURDAY
|| millis < 0
|| millis >= Grego.MILLIS_PER_DAY
|| monthLength < 28
|| monthLength > 31) {
throw new IllegalArgumentException();
}
if (era == GregorianCalendar.BC) {
year = -year;
}
if (finalZone != null && year >= finalStartYear) {
return finalZone.getOffset(era, year, month, dom, dow, millis);
}
// Compute local epoch millis from input fields
long time = Grego.fieldsToDay(year, month, dom) * Grego.MILLIS_PER_DAY + millis;
int[] offsets = new int[2];
getHistoricalOffset(time, true, LOCAL_DST, LOCAL_STD, offsets);
return offsets[0] + offsets[1];
}
/* (non-Javadoc)
* @see com.ibm.icu.util.TimeZone#setRawOffset(int)
*/
@Override
public void setRawOffset(int offsetMillis) {
if (isFrozen()) {
throw new UnsupportedOperationException("Attempt to modify a frozen OlsonTimeZone instance.");
}
if (getRawOffset() == offsetMillis) {
return;
}
long current = System.currentTimeMillis();
if (current < finalStartMillis) {
SimpleTimeZone stz = new SimpleTimeZone(offsetMillis, getID());
boolean bDst = useDaylightTime();
if (bDst) {
TimeZoneRule[] currentRules = getSimpleTimeZoneRulesNear(current);
if (currentRules.length != 3) {
// DST was observed at the beginning of this year, so useDaylightTime
// returned true. getSimpleTimeZoneRulesNear requires at least one
// future transition for making a pair of rules. This implementation
// rolls back the time before the latest offset transition.
TimeZoneTransition tzt = getPreviousTransition(current, false);
if (tzt != null) {
currentRules = getSimpleTimeZoneRulesNear(tzt.getTime() - 1);
}
}
if (currentRules.length == 3
&& (currentRules[1] instanceof AnnualTimeZoneRule)
&& (currentRules[2] instanceof AnnualTimeZoneRule)) {
// A pair of AnnualTimeZoneRule
AnnualTimeZoneRule r1 = (AnnualTimeZoneRule)currentRules[1];
AnnualTimeZoneRule r2 = (AnnualTimeZoneRule)currentRules[2];
DateTimeRule start, end;
int offset1 = r1.getRawOffset() + r1.getDSTSavings();
int offset2 = r2.getRawOffset() + r2.getDSTSavings();
int sav;
if (offset1 > offset2) {
start = r1.getRule();
end = r2.getRule();
sav = offset1 - offset2;
} else {
start = r2.getRule();
end = r1.getRule();
sav = offset2 - offset1;
}
// getSimpleTimeZoneRulesNear always return rules using DOW / WALL_TIME
stz.setStartRule(start.getRuleMonth(), start.getRuleWeekInMonth(), start.getRuleDayOfWeek(),
start.getRuleMillisInDay());
stz.setEndRule(end.getRuleMonth(), end.getRuleWeekInMonth(), end.getRuleDayOfWeek(),
end.getRuleMillisInDay());
// set DST saving amount and start year
stz.setDSTSavings(sav);
} else {
// This could only happen if last rule is DST
// and the rule used forever. For example, Asia/Dhaka
// in tzdata2009i stays in DST forever.
// Hack - set DST starting at midnight on Jan 1st,
// ending 23:59:59.999 on Dec 31st
stz.setStartRule(0, 1, 0);
stz.setEndRule(11, 31, Grego.MILLIS_PER_DAY - 1);
}
}
int[] fields = Grego.timeToFields(current, null);
finalStartYear = fields[0];
finalStartMillis = Grego.fieldsToDay(fields[0], 0, 1);
if (bDst) {
// we probably do not need to set start year of final rule
// to finalzone itself, but we always do this for now.
stz.setStartYear(finalStartYear);
}
finalZone = stz;
} else {
finalZone.setRawOffset(offsetMillis);
}
transitionRulesInitialized = false;
}
@Override
public Object clone() {
if (isFrozen()) {
return this;
}
return cloneAsThawed();
}
/**
* TimeZone API.
*/
@Override
public void getOffset(long date, boolean local, int[] offsets) {
if (finalZone != null && date >= finalStartMillis) {
finalZone.getOffset(date, local, offsets);
} else {
getHistoricalOffset(date, local,
LOCAL_FORMER, LOCAL_LATTER, offsets);
}
}
/**
* {@inheritDoc}
*/
@Override
public void getOffsetFromLocal(long date,
int nonExistingTimeOpt, int duplicatedTimeOpt, int[] offsets) {
if (finalZone != null && date >= finalStartMillis) {
finalZone.getOffsetFromLocal(date, nonExistingTimeOpt, duplicatedTimeOpt, offsets);
} else {
getHistoricalOffset(date, true, nonExistingTimeOpt, duplicatedTimeOpt, offsets);
}
}
/* (non-Javadoc)
* @see com.ibm.icu.util.TimeZone#getRawOffset()
*/
@Override
public int getRawOffset() {
int[] ret = new int[2];
getOffset(System.currentTimeMillis(), false, ret);
return ret[0];
}
/* (non-Javadoc)
* @see com.ibm.icu.util.TimeZone#useDaylightTime()
*/
@Override
public boolean useDaylightTime() {
// If DST was observed in 1942 (for example) but has never been
// observed from 1943 to the present, most clients will expect
// this method to return FALSE. This method determines whether
// DST is in use in the current year (at any point in the year)
// and returns TRUE if so.
long current = System.currentTimeMillis();
if (finalZone != null && current >= finalStartMillis) {
return (finalZone != null && finalZone.useDaylightTime());
}
int[] fields = Grego.timeToFields(current, null);
// Find start of this year, and start of next year
long start = Grego.fieldsToDay(fields[0], 0, 1) * SECONDS_PER_DAY;
long limit = Grego.fieldsToDay(fields[0] + 1, 0, 1) * SECONDS_PER_DAY;
// Return TRUE if DST is observed at any time during the current
// year.
for (int i = 0; i < transitionCount; ++i) {
if (transitionTimes64[i] >= limit) {
break;
}
if ((transitionTimes64[i] >= start && dstOffsetAt(i) != 0)
|| (transitionTimes64[i] > start && i > 0 && dstOffsetAt(i - 1) != 0)) {
return true;
}
}
return false;
}
/* (non-Javadoc)
* @see com.ibm.icu.util.TimeZone#observesDaylightTime()
*/
@Override
public boolean observesDaylightTime() {
long current = System.currentTimeMillis();
if (finalZone != null) {
if (finalZone.useDaylightTime()) {
return true;
} else if (current >= finalStartMillis) {
return false;
}
}
// Return TRUE if DST is observed at any future time
long currentSec = Grego.floorDivide(current, Grego.MILLIS_PER_SECOND);
int trsIdx = transitionCount - 1;
if (dstOffsetAt(trsIdx) != 0) {
return true;
}
while (trsIdx >= 0) {
if (transitionTimes64[trsIdx] <= currentSec) {
break;
}
if (dstOffsetAt(trsIdx - 1) != 0) {
return true;
}
trsIdx--;
}
return false;
}
/**
* TimeZone API
* Returns the amount of time to be added to local standard time
* to get local wall clock time.
*/
@Override
public int getDSTSavings() {
if (finalZone != null){
return finalZone.getDSTSavings();
}
return super.getDSTSavings();
}
/* (non-Javadoc)
* @see com.ibm.icu.util.TimeZone#inDaylightTime(java.util.Date)
*/
@Override
public boolean inDaylightTime(Date date) {
int[] temp = new int[2];
getOffset(date.getTime(), false, temp);
return temp[1] != 0;
}
/* (non-Javadoc)
* @see com.ibm.icu.util.TimeZone#hasSameRules(com.ibm.icu.util.TimeZone)
*/
@Override
public boolean hasSameRules(TimeZone other) {
if (this == other) {
return true;
}
// The super class implementation only check raw offset and
// use of daylight saving time.
if (!super.hasSameRules(other)) {
return false;
}
if (!(other instanceof OlsonTimeZone)) {
// We cannot reasonably compare rules in different types
return false;
}
// Check final zone
OlsonTimeZone o = (OlsonTimeZone)other;
if (finalZone == null) {
if (o.finalZone != null) {
return false;
}
} else {
if (o.finalZone == null
|| finalStartYear != o.finalStartYear
|| !(finalZone.hasSameRules(o.finalZone))) {
return false;
}
}
// Check transitions
// Note: The code below actually fails to compare two equivalent rules in
// different representation properly.
if (transitionCount != o.transitionCount ||
!Arrays.equals(transitionTimes64, o.transitionTimes64) ||
typeCount != o.typeCount ||
!Arrays.equals(typeMapData, o.typeMapData) ||
!Arrays.equals(typeOffsets, o.typeOffsets)){
return false;
}
return true;
}
/**
* Returns the canonical ID of this system time zone
*/
public String getCanonicalID() {
if (canonicalID == null) {
synchronized(this) {
if (canonicalID == null) {
canonicalID = getCanonicalID(getID());
assert(canonicalID != null);
if (canonicalID == null) {
// This should never happen...
canonicalID = getID();
}
}
}
}
return canonicalID;
}
/**
* Construct a GMT+0 zone with no transitions. This is done when a
* constructor fails so the resultant object is well-behaved.
*/
private void constructEmpty(){
transitionCount = 0;
transitionTimes64 = null;
typeMapData = null;
typeCount = 1;
typeOffsets = new int[]{0,0};
finalZone = null;
finalStartYear = Integer.MAX_VALUE;
finalStartMillis = Double.MAX_VALUE;
transitionRulesInitialized = false;
}
/**
* Construct from a resource bundle
* @param top the top-level zoneinfo resource bundle. This is used
* to lookup the rule that `res' may refer to, if there is one.
* @param res the resource bundle of the zone to be constructed
* @param id time zone ID
*/
public OlsonTimeZone(UResourceBundle top, UResourceBundle res, String id){
super(id);
construct(top, res);
}
private void construct(UResourceBundle top, UResourceBundle res){
if ((top == null || res == null)) {
throw new IllegalArgumentException();
}
if(DEBUG) System.out.println("OlsonTimeZone(" + res.getKey() +")");
UResourceBundle r;
int[] transPre32, trans32, transPost32;
transPre32 = trans32 = transPost32 = null;
transitionCount = 0;
// Pre-32bit second transitions
try {
r = res.get("transPre32");
transPre32 = r.getIntVector();
if (transPre32.length % 2 != 0) {
// elements in the pre-32bit must be an even number
throw new IllegalArgumentException("Invalid Format");
}
transitionCount += transPre32.length / 2;
} catch (MissingResourceException e) {
// Pre-32bit transition data is optional
}
// 32bit second transitions
try {
r = res.get("trans");
trans32 = r.getIntVector();
transitionCount += trans32.length;
} catch (MissingResourceException e) {
// 32bit transition data is optional
}
// Post-32bit second transitions
try {
r = res.get("transPost32");
transPost32 = r.getIntVector();
if (transPost32.length % 2 != 0) {
// elements in the post-32bit must be an even number
throw new IllegalArgumentException("Invalid Format");
}
transitionCount += transPost32.length / 2;
} catch (MissingResourceException e) {
// Post-32bit transition data is optional
}
if (transitionCount > 0) {
transitionTimes64 = new long[transitionCount];
int idx = 0;
if (transPre32 != null) {
for (int i = 0; i < transPre32.length / 2; i++, idx++) {
transitionTimes64[idx] =
((transPre32[i * 2]) & 0x00000000FFFFFFFFL) << 32
| ((transPre32[i * 2 + 1]) & 0x00000000FFFFFFFFL);
}
}
if (trans32 != null) {
for (int i = 0; i < trans32.length; i++, idx++) {
transitionTimes64[idx] = trans32[i];
}
}
if (transPost32 != null) {
for (int i = 0; i < transPost32.length / 2; i++, idx++) {
transitionTimes64[idx] =
((transPost32[i * 2]) & 0x00000000FFFFFFFFL) << 32
| ((transPost32[i * 2 + 1]) & 0x00000000FFFFFFFFL);
}
}
} else {
transitionTimes64 = null;
}
// Type offsets list must be of even size, with size >= 2
r = res.get("typeOffsets");
typeOffsets = r.getIntVector();
if ((typeOffsets.length < 2 || typeOffsets.length > 0x7FFE || typeOffsets.length % 2 != 0)) {
throw new IllegalArgumentException("Invalid Format");
}
typeCount = typeOffsets.length / 2;
// Type map data must be of the same size as the transition count
if (transitionCount > 0) {
r = res.get("typeMap");
typeMapData = r.getBinary(null);
if (typeMapData == null || typeMapData.length != transitionCount) {
throw new IllegalArgumentException("Invalid Format");
}
} else {
typeMapData = null;
}
// Process final rule and data, if any
finalZone = null;
finalStartYear = Integer.MAX_VALUE;
finalStartMillis = Double.MAX_VALUE;
String ruleID = null;
try {
ruleID = res.getString("finalRule");
r = res.get("finalRaw");
int ruleRaw = r.getInt() * Grego.MILLIS_PER_SECOND;
r = loadRule(top, ruleID);
int[] ruleData = r.getIntVector();
if (ruleData == null || ruleData.length != 11) {
throw new IllegalArgumentException("Invalid Format");
}
finalZone = new SimpleTimeZone(ruleRaw, "",
ruleData[0], ruleData[1], ruleData[2],
ruleData[3] * Grego.MILLIS_PER_SECOND,
ruleData[4],
ruleData[5], ruleData[6], ruleData[7],
ruleData[8] * Grego.MILLIS_PER_SECOND,
ruleData[9],
ruleData[10] * Grego.MILLIS_PER_SECOND);
r = res.get("finalYear");
finalStartYear = r.getInt();
// Note: Setting finalStartYear to the finalZone is problematic. When a date is around
// year boundary, SimpleTimeZone may return false result when DST is observed at the
// beginning of year. We could apply safe margin (day or two), but when one of recurrent
// rules falls around year boundary, it could return false result. Without setting the
// start year, finalZone works fine around the year boundary of the start year.
// finalZone.setStartYear(finalStartYear);
// Compute the millis for Jan 1, 0:00 GMT of the finalYear
// Note: finalStartMillis is used for detecting either if
// historic transition data or finalZone to be used. In an
// extreme edge case - for example, two transitions fall into
// small windows of time around the year boundary, this may
// result incorrect offset computation. But I think it will
// never happen practically. Yoshito - Feb 20, 2010
finalStartMillis = Grego.fieldsToDay(finalStartYear, 0, 1) * Grego.MILLIS_PER_DAY;
} catch (MissingResourceException e) {
if (ruleID != null) {
// ruleID is found, but missing other data required for
// creating finalZone
throw new IllegalArgumentException("Invalid Format");
}
}
}
// This constructor is used for testing purpose only
public OlsonTimeZone(String id){
super(id);
UResourceBundle top = UResourceBundle.getBundleInstance(ICUData.ICU_BASE_NAME,
ZONEINFORES, ICUResourceBundle.ICU_DATA_CLASS_LOADER);
UResourceBundle res = ZoneMeta.openOlsonResource(top, id);
construct(top, res);
if (finalZone != null){
finalZone.setID(id);
}
}
/* (non-Javadoc)
* @see com.ibm.icu.util.TimeZone#setID(java.lang.String)
*/
@Override
public void setID(String id){
if (isFrozen()) {
throw new UnsupportedOperationException("Attempt to modify a frozen OlsonTimeZone instance.");
}
// Before updating the ID, preserve the original ID's canonical ID.
if (canonicalID == null) {
canonicalID = getCanonicalID(getID());
assert(canonicalID != null);
if (canonicalID == null) {
// This should never happen...
canonicalID = getID();
}
}
if (finalZone != null){
finalZone.setID(id);
}
super.setID(id);
transitionRulesInitialized = false;
}
// Maximum absolute offset in seconds = 1 day.
// getHistoricalOffset uses this constant as safety margin of
// quick zone transition checking.
private static final int MAX_OFFSET_SECONDS = 86400; // 60 * 60 * 24;
private void getHistoricalOffset(long date, boolean local,
int NonExistingTimeOpt, int DuplicatedTimeOpt, int[] offsets) {
if (transitionCount != 0) {
long sec = Grego.floorDivide(date, Grego.MILLIS_PER_SECOND);
if (!local && sec < transitionTimes64[0]) {
// Before the first transition time
offsets[0] = initialRawOffset() * Grego.MILLIS_PER_SECOND;
offsets[1] = initialDstOffset() * Grego.MILLIS_PER_SECOND;
} else {
// Linear search from the end is the fastest approach, since
// most lookups will happen at/near the end.
int transIdx;
for (transIdx = transitionCount - 1; transIdx >= 0; transIdx--) {
long transition = transitionTimes64[transIdx];
if (local && (sec >= (transition - MAX_OFFSET_SECONDS))) {
int offsetBefore = zoneOffsetAt(transIdx - 1);
boolean dstBefore = dstOffsetAt(transIdx - 1) != 0;
int offsetAfter = zoneOffsetAt(transIdx);
boolean dstAfter = dstOffsetAt(transIdx) != 0;
boolean dstToStd = dstBefore && !dstAfter;
boolean stdToDst = !dstBefore && dstAfter;
if (offsetAfter - offsetBefore >= 0) {
// Positive transition, which makes a non-existing local time range
if (((NonExistingTimeOpt & STD_DST_MASK) == LOCAL_STD && dstToStd)
|| ((NonExistingTimeOpt & STD_DST_MASK) == LOCAL_DST && stdToDst)) {
transition += offsetBefore;
} else if (((NonExistingTimeOpt & STD_DST_MASK) == LOCAL_STD && stdToDst)
|| ((NonExistingTimeOpt & STD_DST_MASK) == LOCAL_DST && dstToStd)) {
transition += offsetAfter;
} else if ((NonExistingTimeOpt & FORMER_LATTER_MASK) == LOCAL_LATTER) {
transition += offsetBefore;
} else {
// Interprets the time with rule before the transition,
// default for non-existing time range
transition += offsetAfter;
}
} else {
// Negative transition, which makes a duplicated local time range
if (((DuplicatedTimeOpt & STD_DST_MASK) == LOCAL_STD && dstToStd)
|| ((DuplicatedTimeOpt & STD_DST_MASK) == LOCAL_DST && stdToDst)) {
transition += offsetAfter;
} else if (((DuplicatedTimeOpt & STD_DST_MASK) == LOCAL_STD && stdToDst)
|| ((DuplicatedTimeOpt & STD_DST_MASK) == LOCAL_DST && dstToStd)) {
transition += offsetBefore;
} else if ((DuplicatedTimeOpt & FORMER_LATTER_MASK) == LOCAL_FORMER) {
transition += offsetBefore;
} else {
// Interprets the time with rule after the transition,
// default for duplicated local time range
transition += offsetAfter;
}
}
}
if (sec >= transition) {
break;
}
}
// transIdx could be -1 when local=true
offsets[0] = rawOffsetAt(transIdx) * Grego.MILLIS_PER_SECOND;
offsets[1] = dstOffsetAt(transIdx) * Grego.MILLIS_PER_SECOND;
}
} else {
// No transitions, single pair of offsets only
offsets[0] = initialRawOffset() * Grego.MILLIS_PER_SECOND;
offsets[1] = initialDstOffset() * Grego.MILLIS_PER_SECOND;
}
}
private int getInt(byte val){
return val & 0xFF;
}
/*
* Following 3 methods return an offset at the given transition time index.
* When the index is negative, return the initial offset.
*/
private int zoneOffsetAt(int transIdx) {
int typeIdx = transIdx >= 0 ? getInt(typeMapData[transIdx]) * 2 : 0;
return typeOffsets[typeIdx] + typeOffsets[typeIdx + 1];
}
private int rawOffsetAt(int transIdx) {
int typeIdx = transIdx >= 0 ? getInt(typeMapData[transIdx]) * 2 : 0;
return typeOffsets[typeIdx];
}
private int dstOffsetAt(int transIdx) {
int typeIdx = transIdx >= 0 ? getInt(typeMapData[transIdx]) * 2 : 0;
return typeOffsets[typeIdx + 1];
}
private int initialRawOffset() {
return typeOffsets[0];
}
private int initialDstOffset() {
return typeOffsets[1];
}
// temp
@Override
public String toString() {
StringBuilder buf = new StringBuilder();
buf.append(super.toString());
buf.append('[');
buf.append("transitionCount=" + transitionCount);
buf.append(",typeCount=" + typeCount);
buf.append(",transitionTimes=");
if (transitionTimes64 != null) {
buf.append('[');
for (int i = 0; i < transitionTimes64.length; ++i) {
if (i > 0) {
buf.append(',');
}
buf.append(Long.toString(transitionTimes64[i]));
}
buf.append(']');
} else {
buf.append("null");
}
buf.append(",typeOffsets=");
if (typeOffsets != null) {
buf.append('[');
for (int i = 0; i < typeOffsets.length; ++i) {
if (i > 0) {
buf.append(',');
}
buf.append(Integer.toString(typeOffsets[i]));
}
buf.append(']');
} else {
buf.append("null");
}
buf.append(",typeMapData=");
if (typeMapData != null) {
buf.append('[');
for (int i = 0; i < typeMapData.length; ++i) {
if (i > 0) {
buf.append(',');
}
buf.append(Byte.toString(typeMapData[i]));
}
} else {
buf.append("null");
}
buf.append(",finalStartYear=" + finalStartYear);
buf.append(",finalStartMillis=" + finalStartMillis);
buf.append(",finalZone=" + finalZone);
buf.append(']');
return buf.toString();
}
/**
* Number of transitions, 0..~370
*/
private int transitionCount;
/**
* Number of types, 1..255
*/
private int typeCount;
/**
* Time of each transition in seconds from 1970 epoch.
*/
private long[] transitionTimes64;
/**
* Offset from GMT in seconds for each type.
* Length is equal to typeCount
*/
private int[] typeOffsets;
/**
* Type description data, consisting of transitionCount uint8_t
* type indices (from 0..typeCount-1).
* Length is equal to transitionCount
*/
private byte[] typeMapData;
/**
* For year >= finalStartYear, the finalZone will be used.
*/
private int finalStartYear = Integer.MAX_VALUE;
/**
* For date >= finalStartMillis, the finalZone will be used.
*/
private double finalStartMillis = Double.MAX_VALUE;
/**
* A SimpleTimeZone that governs the behavior for years >= finalYear.
* If and only if finalYear == INT32_MAX then finalZone == 0.
*/
private SimpleTimeZone finalZone = null; // owned, may be NULL
/**
* The canonical ID of this zone. Initialized when {@link #getCanonicalID()}
* is invoked first time, or {@link #setID(String)} is called.
*/
private volatile String canonicalID = null;
private static final String ZONEINFORES = "zoneinfo64";
private static final boolean DEBUG = ICUDebug.enabled("olson");
private static final int SECONDS_PER_DAY = 24*60*60;
private static UResourceBundle loadRule(UResourceBundle top, String ruleid) {
UResourceBundle r = top.get("Rules");
r = r.get(ruleid);
return r;
}
@Override
public boolean equals(Object obj){
if (!super.equals(obj)) return false; // super does class check
OlsonTimeZone z = (OlsonTimeZone) obj;
return (Utility.arrayEquals(typeMapData, z.typeMapData) ||
// If the pointers are not equal, the zones may still
// be equal if their rules and transitions are equal
(finalStartYear == z.finalStartYear &&
// Don't compare finalMillis; if finalYear is ==, so is finalMillis
((finalZone == null && z.finalZone == null) ||
(finalZone != null && z.finalZone != null &&
finalZone.equals(z.finalZone)) &&
transitionCount == z.transitionCount &&
typeCount == z.typeCount &&
Utility.arrayEquals(transitionTimes64, z.transitionTimes64) &&
Utility.arrayEquals(typeOffsets, z.typeOffsets) &&
Utility.arrayEquals(typeMapData, z.typeMapData)
)));
}
@Override
public int hashCode(){
int ret = (int) (finalStartYear ^ (finalStartYear>>>4) +
transitionCount ^ (transitionCount>>>6) +
typeCount ^ (typeCount>>>8) +
Double.doubleToLongBits(finalStartMillis)+
(finalZone == null ? 0 : finalZone.hashCode()) +
super.hashCode());
if (transitionTimes64 != null) {
for(int i=0; i>>8);
}
}
for(int i=0; i>>8);
}
if (typeMapData != null) {
for(int i=0; i= firstFinalTZTransition.getTime()) {
if (finalZone.useDaylightTime()) {
//return finalZone.getNextTransition(base, inclusive);
return finalZoneWithStartYear.getNextTransition(base, inclusive);
} else {
// No more transitions
return null;
}
}
}
if (historicRules != null) {
// Find a historical transition
int ttidx = transitionCount - 1;
for (; ttidx >= firstTZTransitionIdx; ttidx--) {
long t = transitionTimes64[ttidx] * Grego.MILLIS_PER_SECOND;
if (base > t || (!inclusive && base == t)) {
break;
}
}
if (ttidx == transitionCount - 1) {
return firstFinalTZTransition;
} else if (ttidx < firstTZTransitionIdx) {
return firstTZTransition;
} else {
// Create a TimeZoneTransition
TimeZoneRule to = historicRules[getInt(typeMapData[ttidx + 1])];
TimeZoneRule from = historicRules[getInt(typeMapData[ttidx])];
long startTime = transitionTimes64[ttidx+1] * Grego.MILLIS_PER_SECOND;
// The transitions loaded from zoneinfo.res may contain non-transition data
if (from.getName().equals(to.getName()) && from.getRawOffset() == to.getRawOffset()
&& from.getDSTSavings() == to.getDSTSavings()) {
return getNextTransition(startTime, false);
}
return new TimeZoneTransition(startTime, from, to);
}
}
return null;
}
/* (non-Javadoc)
* @see com.ibm.icu.util.BasicTimeZone#getPreviousTransition(long, boolean)
*/
@Override
public TimeZoneTransition getPreviousTransition(long base, boolean inclusive) {
initTransitionRules();
if (finalZone != null) {
if (inclusive && base == firstFinalTZTransition.getTime()) {
return firstFinalTZTransition;
} else if (base > firstFinalTZTransition.getTime()) {
if (finalZone.useDaylightTime()) {
//return finalZone.getPreviousTransition(base, inclusive);
return finalZoneWithStartYear.getPreviousTransition(base, inclusive);
} else {
return firstFinalTZTransition;
}
}
}
if (historicRules != null) {
// Find a historical transition
int ttidx = transitionCount - 1;
for (; ttidx >= firstTZTransitionIdx; ttidx--) {
long t = transitionTimes64[ttidx] * Grego.MILLIS_PER_SECOND;
if (base > t || (inclusive && base == t)) {
break;
}
}
if (ttidx < firstTZTransitionIdx) {
// No more transitions
return null;
} else if (ttidx == firstTZTransitionIdx) {
return firstTZTransition;
} else {
// Create a TimeZoneTransition
TimeZoneRule to = historicRules[getInt(typeMapData[ttidx])];
TimeZoneRule from = historicRules[getInt(typeMapData[ttidx-1])];
long startTime = transitionTimes64[ttidx] * Grego.MILLIS_PER_SECOND;
// The transitions loaded from zoneinfo.res may contain non-transition data
if (from.getName().equals(to.getName()) && from.getRawOffset() == to.getRawOffset()
&& from.getDSTSavings() == to.getDSTSavings()) {
return getPreviousTransition(startTime, false);
}
return new TimeZoneTransition(startTime, from, to);
}
}
return null;
}
/* (non-Javadoc)
* @see com.ibm.icu.util.BasicTimeZone#getTimeZoneRules()
*/
@Override
public TimeZoneRule[] getTimeZoneRules() {
initTransitionRules();
int size = 1;
if (historicRules != null) {
// historicRules may contain null entries when original zoneinfo data
// includes non transition data.
for (int i = 0; i < historicRules.length; i++) {
if (historicRules[i] != null) {
size++;
}
}
}
if (finalZone != null) {
if (finalZone.useDaylightTime()) {
size += 2;
} else {
size++;
}
}
TimeZoneRule[] rules = new TimeZoneRule[size];
int idx = 0;
rules[idx++] = initialRule;
if (historicRules != null) {
for (int i = 0; i < historicRules.length; i++) {
if (historicRules[i] != null) {
rules[idx++] = historicRules[i];
}
}
}
if (finalZone != null) {
if (finalZone.useDaylightTime()) {
TimeZoneRule[] stzr = finalZoneWithStartYear.getTimeZoneRules();
// Adding only transition rules
rules[idx++] = stzr[1];
rules[idx++] = stzr[2];
} else {
// Create a TimeArrayTimeZoneRule at finalMillis
rules[idx++] = new TimeArrayTimeZoneRule(getID() + "(STD)", finalZone.getRawOffset(), 0,
new long[] {(long)finalStartMillis}, DateTimeRule.UTC_TIME);
}
}
return rules;
}
private transient InitialTimeZoneRule initialRule;
private transient TimeZoneTransition firstTZTransition;
private transient int firstTZTransitionIdx;
private transient TimeZoneTransition firstFinalTZTransition;
private transient TimeArrayTimeZoneRule[] historicRules;
private transient SimpleTimeZone finalZoneWithStartYear; // hack
private transient boolean transitionRulesInitialized;
private synchronized void initTransitionRules() {
if (transitionRulesInitialized) {
return;
}
initialRule = null;
firstTZTransition = null;
firstFinalTZTransition = null;
historicRules = null;
firstTZTransitionIdx = 0;
finalZoneWithStartYear = null;
String stdName = getID() + "(STD)";
String dstName = getID() + "(DST)";
int raw, dst;
// Create initial rule
raw = initialRawOffset() * Grego.MILLIS_PER_SECOND;
dst = initialDstOffset() * Grego.MILLIS_PER_SECOND;
initialRule = new InitialTimeZoneRule((dst == 0 ? stdName : dstName), raw, dst);
if (transitionCount > 0) {
int transitionIdx, typeIdx;
// We probably no longer need to check the first "real" transition
// here, because the new tzcode remove such transitions already.
// For now, keeping this code for just in case. Feb 19, 2010 Yoshito
for (transitionIdx = 0; transitionIdx < transitionCount; transitionIdx++) {
if (getInt(typeMapData[transitionIdx]) != 0) { // type 0 is the initial type
break;
}
firstTZTransitionIdx++;
}
if (transitionIdx == transitionCount) {
// Actually no transitions...
} else {
// Build historic rule array
long[] times = new long[transitionCount];
for (typeIdx = 0; typeIdx < typeCount; typeIdx++) {
// Gather all start times for each pair of offsets
int nTimes = 0;
for (transitionIdx = firstTZTransitionIdx; transitionIdx < transitionCount; transitionIdx++) {
if (typeIdx == getInt(typeMapData[transitionIdx])) {
long tt = transitionTimes64[transitionIdx] * Grego.MILLIS_PER_SECOND;
if (tt < finalStartMillis) {
// Exclude transitions after finalMillis
times[nTimes++] = tt;
}
}
}
if (nTimes > 0) {
long[] startTimes = new long[nTimes];
System.arraycopy(times, 0, startTimes, 0, nTimes);
// Create a TimeArrayTimeZoneRule
raw = typeOffsets[typeIdx*2]*Grego.MILLIS_PER_SECOND;
dst = typeOffsets[typeIdx*2 + 1]*Grego.MILLIS_PER_SECOND;
if (historicRules == null) {
historicRules = new TimeArrayTimeZoneRule[typeCount];
}
historicRules[typeIdx] = new TimeArrayTimeZoneRule((dst == 0 ? stdName : dstName),
raw, dst, startTimes, DateTimeRule.UTC_TIME);
}
}
// Create initial transition
typeIdx = getInt(typeMapData[firstTZTransitionIdx]);
firstTZTransition = new TimeZoneTransition(transitionTimes64[firstTZTransitionIdx] * Grego.MILLIS_PER_SECOND,
initialRule, historicRules[typeIdx]);
}
}
if (finalZone != null) {
// Get the first occurrence of final rule starts
long startTime = (long)finalStartMillis;
TimeZoneRule firstFinalRule;
if (finalZone.useDaylightTime()) {
/*
* Note: When an OlsonTimeZone is constructed, we should set the final year
* as the start year of finalZone. However, the boundary condition used for
* getting offset from finalZone has some problems. So setting the start year
* in the finalZone will cause a problem. For now, we do not set the valid
* start year when the construction time and create a clone and set the
* start year when extracting rules.
*/
finalZoneWithStartYear = (SimpleTimeZone)finalZone.clone();
finalZoneWithStartYear.setStartYear(finalStartYear);
TimeZoneTransition tzt = finalZoneWithStartYear.getNextTransition(startTime, false);
firstFinalRule = tzt.getTo();
startTime = tzt.getTime();
} else {
finalZoneWithStartYear = finalZone;
firstFinalRule = new TimeArrayTimeZoneRule(finalZone.getID(),
finalZone.getRawOffset(), 0, new long[] {startTime}, DateTimeRule.UTC_TIME);
}
TimeZoneRule prevRule = null;
if (transitionCount > 0) {
prevRule = historicRules[getInt(typeMapData[transitionCount - 1])];
}
if (prevRule == null) {
// No historic transitions, but only finalZone available
prevRule = initialRule;
}
firstFinalTZTransition = new TimeZoneTransition(startTime, prevRule, firstFinalRule);
}
transitionRulesInitialized = true;
}
// Note: This class does not support back level serialization compatibility
// very well. ICU 4.4 introduced the 64bit transition data. It is probably
// possible to implement this class to make old version of ICU to deserialize
// object stream serialized by ICU 4.4+. However, such implementation will
// introduce unnecessary complexity other than serialization support.
// I decided to provide minimum level of backward compatibility, which
// only support ICU 4.4+ to create an instance of OlsonTimeZone by reloading
// the zone rules from bundles. ICU 4.2 or older version of ICU cannot
// deserialize object stream created by ICU 4.4+. Yoshito -Feb 22, 2010
private static final int currentSerialVersion = 1;
private int serialVersionOnStream = currentSerialVersion;
private void readObject(ObjectInputStream stream) throws IOException, ClassNotFoundException {
stream.defaultReadObject();
if (serialVersionOnStream < 1) {
// No version - 4.2 or older
// Just reloading the rule from bundle
boolean initialized = false;
String tzid = getID();
if (tzid != null) {
try {
UResourceBundle top = UResourceBundle.getBundleInstance(ICUData.ICU_BASE_NAME,
ZONEINFORES, ICUResourceBundle.ICU_DATA_CLASS_LOADER);
UResourceBundle res = ZoneMeta.openOlsonResource(top, tzid);
construct(top, res);
if (finalZone != null){
finalZone.setID(tzid);
}
initialized = true;
} catch (Exception ignored) {
// throw away
}
}
if (!initialized) {
// final resort
constructEmpty();
}
}
// need to rebuild transition rules when requested
transitionRulesInitialized = false;
}
// Freezable stuffs
private transient volatile boolean isFrozen = false;
/* (non-Javadoc)
* @see com.ibm.icu.util.TimeZone#isFrozen()
*/
@Override
public boolean isFrozen() {
return isFrozen;
}
/* (non-Javadoc)
* @see com.ibm.icu.util.TimeZone#freeze()
*/
@Override
public TimeZone freeze() {
isFrozen = true;
return this;
}
/* (non-Javadoc)
* @see com.ibm.icu.util.TimeZone#cloneAsThawed()
*/
@Override
public TimeZone cloneAsThawed() {
OlsonTimeZone tz = (OlsonTimeZone)super.cloneAsThawed();
if (finalZone != null) {
// TODO Do we really need this?
finalZone.setID(getID());
tz.finalZone = (SimpleTimeZone) finalZone.clone();
}
// Following data are read-only and never changed.
// Therefore, shallow copies should be sufficient.
//
// transitionTimes64
// typeMapData
// typeOffsets
tz.isFrozen = false;
return tz;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy