All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.analysis.solvers.IllinoisSolver Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.analysis.solvers;


/**
 * Implements the Illinois method for root-finding (approximating
 * a zero of a univariate real function). It is a modified
 * {@link RegulaFalsiSolver Regula Falsi} method.
 *
 * 

Like the Regula Falsi method, convergence is guaranteed by * maintaining a bracketed solution. The Illinois method however, * should converge much faster than the original Regula Falsi * method. Furthermore, this implementation of the Illinois method * should not suffer from the same implementation issues as the Regula * Falsi method, which may fail to convergence in certain cases.

* *

The Illinois method assumes that the function is continuous, * but not necessarily smooth.

* *

Implementation based on the following article: M. Dowell and P. Jarratt, * A modified regula falsi method for computing the root of an * equation, BIT Numerical Mathematics, volume 11, number 2, * pages 168-174, Springer, 1971.

* * @since 3.0 */ public class IllinoisSolver extends BaseSecantSolver { /** Construct a solver with default accuracy (1e-6). */ public IllinoisSolver() { super(DEFAULT_ABSOLUTE_ACCURACY, Method.ILLINOIS); } /** * Construct a solver. * * @param absoluteAccuracy Absolute accuracy. */ public IllinoisSolver(final double absoluteAccuracy) { super(absoluteAccuracy, Method.ILLINOIS); } /** * Construct a solver. * * @param relativeAccuracy Relative accuracy. * @param absoluteAccuracy Absolute accuracy. */ public IllinoisSolver(final double relativeAccuracy, final double absoluteAccuracy) { super(relativeAccuracy, absoluteAccuracy, Method.ILLINOIS); } /** * Construct a solver. * * @param relativeAccuracy Relative accuracy. * @param absoluteAccuracy Absolute accuracy. * @param functionValueAccuracy Maximum function value error. */ public IllinoisSolver(final double relativeAccuracy, final double absoluteAccuracy, final double functionValueAccuracy) { super(relativeAccuracy, absoluteAccuracy, functionValueAccuracy, Method.PEGASUS); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy