All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.transform.FastSineTransformer Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.transform;

import java.io.Serializable;

import org.apache.commons.math3.analysis.FunctionUtils;
import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.complex.Complex;
import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.ArithmeticUtils;
import org.apache.commons.math3.util.FastMath;

/**
 * Implements the Fast Sine Transform for transformation of one-dimensional real
 * data sets. For reference, see James S. Walker, Fast Fourier
 * Transforms, chapter 3 (ISBN 0849371635).
 * 

* There are several variants of the discrete sine transform. The present * implementation corresponds to DST-I, with various normalization conventions, * which are specified by the parameter {@link DstNormalization}. * It should be noted that regardless to the convention, the first * element of the dataset to be transformed must be zero. *

* DST-I is equivalent to DFT of an odd extension of the data series. * More precisely, if x0, …, xN-1 is the data set * to be sine transformed, the extended data set x0#, * …, x2N-1# is defined as follows *

    *
  • x0# = x0 = 0,
  • *
  • xk# = xk if 1 ≤ k < N,
  • *
  • xN# = 0,
  • *
  • xk# = -x2N-k if N + 1 ≤ k < * 2N.
  • *
*

* Then, the standard DST-I y0, …, yN-1 of the real * data set x0, …, xN-1 is equal to half * of i (the pure imaginary number) times the N first elements of the DFT of the * extended data set x0#, …, * x2N-1#
* yn = (i / 2) ∑k=02N-1 * xk# exp[-2πi nk / (2N)] *     k = 0, …, N-1. *

* The present implementation of the discrete sine transform as a fast sine * transform requires the length of the data to be a power of two. Besides, * it implicitly assumes that the sampled function is odd. In particular, the * first element of the data set must be 0, which is enforced in * {@link #transform(UnivariateFunction, double, double, int, TransformType)}, * after sampling. * * @since 1.2 */ public class FastSineTransformer implements RealTransformer, Serializable { /** Serializable version identifier. */ static final long serialVersionUID = 20120211L; /** The type of DST to be performed. */ private final DstNormalization normalization; /** * Creates a new instance of this class, with various normalization conventions. * * @param normalization the type of normalization to be applied to the transformed data */ public FastSineTransformer(final DstNormalization normalization) { this.normalization = normalization; } /** * {@inheritDoc} * * The first element of the specified data set is required to be {@code 0}. * * @throws MathIllegalArgumentException if the length of the data array is * not a power of two, or the first element of the data array is not zero */ public double[] transform(final double[] f, final TransformType type) { if (normalization == DstNormalization.ORTHOGONAL_DST_I) { final double s = FastMath.sqrt(2.0 / f.length); return TransformUtils.scaleArray(fst(f), s); } if (type == TransformType.FORWARD) { return fst(f); } final double s = 2.0 / f.length; return TransformUtils.scaleArray(fst(f), s); } /** * {@inheritDoc} * * This implementation enforces {@code f(x) = 0.0} at {@code x = 0.0}. * * @throws org.apache.commons.math3.exception.NonMonotonicSequenceException * if the lower bound is greater than, or equal to the upper bound * @throws org.apache.commons.math3.exception.NotStrictlyPositiveException * if the number of sample points is negative * @throws MathIllegalArgumentException if the number of sample points is not a power of two */ public double[] transform(final UnivariateFunction f, final double min, final double max, final int n, final TransformType type) { final double[] data = FunctionUtils.sample(f, min, max, n); data[0] = 0.0; return transform(data, type); } /** * Perform the FST algorithm (including inverse). The first element of the * data set is required to be {@code 0}. * * @param f the real data array to be transformed * @return the real transformed array * @throws MathIllegalArgumentException if the length of the data array is * not a power of two, or the first element of the data array is not zero */ protected double[] fst(double[] f) throws MathIllegalArgumentException { final double[] transformed = new double[f.length]; if (!ArithmeticUtils.isPowerOfTwo(f.length)) { throw new MathIllegalArgumentException( LocalizedFormats.NOT_POWER_OF_TWO_CONSIDER_PADDING, Integer.valueOf(f.length)); } if (f[0] != 0.0) { throw new MathIllegalArgumentException( LocalizedFormats.FIRST_ELEMENT_NOT_ZERO, Double.valueOf(f[0])); } final int n = f.length; if (n == 1) { // trivial case transformed[0] = 0.0; return transformed; } // construct a new array and perform FFT on it final double[] x = new double[n]; x[0] = 0.0; x[n >> 1] = 2.0 * f[n >> 1]; for (int i = 1; i < (n >> 1); i++) { final double a = FastMath.sin(i * FastMath.PI / n) * (f[i] + f[n - i]); final double b = 0.5 * (f[i] - f[n - i]); x[i] = a + b; x[n - i] = a - b; } FastFourierTransformer transformer; transformer = new FastFourierTransformer(DftNormalization.STANDARD); Complex[] y = transformer.transform(x, TransformType.FORWARD); // reconstruct the FST result for the original array transformed[0] = 0.0; transformed[1] = 0.5 * y[0].getReal(); for (int i = 1; i < (n >> 1); i++) { transformed[2 * i] = -y[i].getImaginary(); transformed[2 * i + 1] = y[i].getReal() + transformed[2 * i - 1]; } return transformed; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy