All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.ibm.icu.text.RBBITableBuilder Maven / Gradle / Ivy

// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html#License
/*
**********************************************************************
*   Copyright (c) 2002-2016, International Business Machines
*   Corporation and others.  All Rights Reserved.
**********************************************************************
*/

package com.ibm.icu.text;

import java.util.ArrayList;
import java.util.Collection;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.util.SortedSet;
import java.util.TreeSet;

import com.ibm.icu.impl.Assert;
import com.ibm.icu.lang.UCharacter;
import com.ibm.icu.lang.UProperty;

//
//  class RBBITableBuilder is part of the RBBI rule compiler.
//                         It builds the state transition table used by the RBBI runtime
//                         from the expression syntax tree generated by the rule scanner.
//
//                         This class is part of the RBBI implementation only.
//                         There is no user-visible public API here.
//
class RBBITableBuilder {



    //
    //  RBBIStateDescriptor - The DFA is initially constructed as a set of these descriptors,
    //                        one for each state.
    static class RBBIStateDescriptor {
        boolean      fMarked;
        int          fAccepting;
        int          fLookAhead;
        SortedSet fTagVals;
        int          fTagsIdx;
        Set fPositions;                 // Set of parse tree positions associated
                                                  //   with this state.  Unordered (it's a set).
                                                  //   UVector contents are RBBINode *

        int[]        fDtran;                      // Transitions out of this state.
                                                   //   indexed by input character
                                                   //   contents is int index of dest state
                                                   //   in RBBITableBuilder.fDStates

        RBBIStateDescriptor(int maxInputSymbol) {
            fTagVals = new TreeSet();
            fPositions = new HashSet();
            fDtran = new int[maxInputSymbol+1];    // fDtran needs to be pre-sized.
                                                    //   It is indexed by input symbols, and will
                                                    //   hold  the next state number for each
                                                    //   symbol.
        }
    }


    private  RBBIRuleBuilder  fRB;
    private  int             fRootIx;             // The array index into RBBIRuleBuilder.fTreeRoots
                                                   //   for the parse tree to operate on.
                                                   //   Too bad Java can't do indirection more easily!

    private  List fDStates;    //  D states (Aho's terminology)
                                                    //  Index is state number
                                                    //  Contents are RBBIStateDescriptor pointers.

    //-----------------------------------------------------------------------------
    //
    //  Constructor    for RBBITableBuilder.
    //
    //                 rootNode is an index into the array of root nodes that is held by
    //                          the overall RBBIRuleBuilder.
    //-----------------------------------------------------------------------------
    RBBITableBuilder(RBBIRuleBuilder rb,  int rootNodeIx)  {
           fRootIx     = rootNodeIx;
           fRB         = rb;
           fDStates    = new ArrayList();
        }




       //-----------------------------------------------------------------------------
       //
       //   RBBITableBuilder::build  -  This is the main function for building the DFA state transtion
       //                               table from the RBBI rules parse tree.
       //
       //-----------------------------------------------------------------------------
       void  build() {
           // If there were no rules, just return.  This situation can easily arise
           //   for the reverse rules.
           if (fRB.fTreeRoots[fRootIx]==null) {
               return;
           }

           //
           // Walk through the tree, replacing any references to $variables with a copy of the
           //   parse tree for the substition expression.
           //
           fRB.fTreeRoots[fRootIx] = fRB.fTreeRoots[fRootIx].flattenVariables();
           if (fRB.fDebugEnv!=null && fRB.fDebugEnv.indexOf("ftree")>=0) {
               System.out.println("Parse tree after flattening variable references.");
               fRB.fTreeRoots[fRootIx].printTree(true);
           }

           //
           // If the rules contained any references to {bof}
           //   add a {bof}   to the
           //   tree.  Means that all matches must start out with the
           //   {bof} fake character.
           //
           if (fRB.fSetBuilder.sawBOF()) {
               RBBINode bofTop    = new RBBINode(RBBINode.opCat);
               RBBINode bofLeaf   = new RBBINode(RBBINode.leafChar);
               bofTop.fLeftChild  = bofLeaf;
               bofTop.fRightChild = fRB.fTreeRoots[fRootIx];
               bofLeaf.fParent    = bofTop;
               bofLeaf.fVal       = 2;      // Reserved value for {bof}.
               fRB.fTreeRoots[fRootIx] = bofTop;
           }

           //
           // Add a unique right-end marker to the expression.
           //   Appears as a cat-node, left child being the original tree,
           //   right child being the end marker.
           //
           RBBINode cn = new RBBINode(RBBINode.opCat);
           cn.fLeftChild = fRB.fTreeRoots[fRootIx];
           fRB.fTreeRoots[fRootIx].fParent = cn;
           cn.fRightChild = new RBBINode(RBBINode.endMark);
           cn.fRightChild.fParent = cn;
           fRB.fTreeRoots[fRootIx] = cn;

           //
           //  Replace all references to UnicodeSets with the tree for the equivalent
           //      expression.
           //
           fRB.fTreeRoots[fRootIx].flattenSets();
           if (fRB.fDebugEnv!=null && fRB.fDebugEnv.indexOf("stree")>=0) {
               System.out.println("Parse tree after flattening Unicode Set references.");
               fRB.fTreeRoots[fRootIx].printTree(true);
           }


           //
           // calculate the functions nullable, firstpos, lastpos and followpos on
           // nodes in the parse tree.
           //    See the alogrithm description in Aho.
           //    Understanding how this works by looking at the code alone will be
           //       nearly impossible.
           //
           calcNullable(fRB.fTreeRoots[fRootIx]);
           calcFirstPos(fRB.fTreeRoots[fRootIx]);
           calcLastPos(fRB.fTreeRoots[fRootIx]);
           calcFollowPos(fRB.fTreeRoots[fRootIx]);
           if (fRB.fDebugEnv!=null && fRB.fDebugEnv.indexOf("pos")>=0) {
               System.out.print("\n");
               printPosSets(fRB.fTreeRoots[fRootIx]);
           }

           //
           //  For "chained" rules, modify the followPos sets
           //
           if (fRB.fChainRules) {
               calcChainedFollowPos(fRB.fTreeRoots[fRootIx]);
           }

           //
           //  BOF (start of input) test fixup.
           //
           if (fRB.fSetBuilder.sawBOF()) {
               bofFixup();
           }

           //
           // Build the DFA state transition tables.
           //
           buildStateTable();
           flagAcceptingStates();
           flagLookAheadStates();
           flagTaggedStates();

           //
           // Update the global table of rule status {tag} values
           // The rule builder has a global vector of status values that are common
           //    for all tables.  Merge the ones from this table into the global set.
           //
           mergeRuleStatusVals();

           if (fRB.fDebugEnv!=null && fRB.fDebugEnv.indexOf("states")>=0) {printStates();}
       }



       //-----------------------------------------------------------------------------
       //
       //   calcNullable.    Impossible to explain succinctly.  See Aho, section 3.9
       //
       //-----------------------------------------------------------------------------
       void calcNullable(RBBINode n) {
           if (n == null) {
               return;
           }
           if (n.fType == RBBINode.setRef ||
               n.fType == RBBINode.endMark ) {
               // These are non-empty leaf node types.
               n.fNullable = false;
               return;
           }

           if (n.fType == RBBINode.lookAhead || n.fType == RBBINode.tag) {
               // Lookahead marker node.  It's a leaf, so no recursion on children.
               // It's nullable because it does not match any literal text from the input stream.
               n.fNullable = true;
               return;
           }


           // The node is not a leaf.
           //  Calculate nullable on its children.
           calcNullable(n.fLeftChild);
           calcNullable(n.fRightChild);

           // Apply functions from table 3.40 in Aho
           if (n.fType == RBBINode.opOr) {
               n.fNullable = n.fLeftChild.fNullable || n.fRightChild.fNullable;
           }
           else if (n.fType == RBBINode.opCat) {
               n.fNullable = n.fLeftChild.fNullable && n.fRightChild.fNullable;
           }
           else if (n.fType == RBBINode.opStar || n.fType == RBBINode.opQuestion) {
               n.fNullable = true;
           }
           else {
               n.fNullable = false;
           }
       }




       //-----------------------------------------------------------------------------
       //
       //   calcFirstPos.    Impossible to explain succinctly.  See Aho, section 3.9
       //
       //-----------------------------------------------------------------------------
       void calcFirstPos(RBBINode n) {
           if (n == null) {
               return;
           }
           if (n.fType == RBBINode.leafChar  ||
               n.fType == RBBINode.endMark   ||
               n.fType == RBBINode.lookAhead ||
               n.fType == RBBINode.tag) {
               // These are non-empty leaf node types.
               n.fFirstPosSet.add(n);
               return;
           }

           // The node is not a leaf.
           //  Calculate firstPos on its children.
           calcFirstPos(n.fLeftChild);
           calcFirstPos(n.fRightChild);

           // Apply functions from table 3.40 in Aho
           if (n.fType == RBBINode.opOr) {
               n.fFirstPosSet.addAll(n.fLeftChild.fFirstPosSet);
               n.fFirstPosSet.addAll(n.fRightChild.fFirstPosSet);
           }
           else if (n.fType == RBBINode.opCat) {
               n.fFirstPosSet.addAll(n.fLeftChild.fFirstPosSet);
               if (n.fLeftChild.fNullable) {
                   n.fFirstPosSet.addAll(n.fRightChild.fFirstPosSet);
               }
           }
           else if (n.fType == RBBINode.opStar ||
                    n.fType == RBBINode.opQuestion ||
                    n.fType == RBBINode.opPlus) {
               n.fFirstPosSet.addAll(n.fLeftChild.fFirstPosSet);
           }
       }



       //-----------------------------------------------------------------------------
       //
       //   calcLastPos.    Impossible to explain succinctly.  See Aho, section 3.9
       //
       //-----------------------------------------------------------------------------
       void calcLastPos(RBBINode n) {
           if (n == null) {
               return;
           }
           if (n.fType == RBBINode.leafChar  ||
               n.fType == RBBINode.endMark   ||
               n.fType == RBBINode.lookAhead ||
               n.fType == RBBINode.tag) {
               // These are non-empty leaf node types.
               n.fLastPosSet.add(n);
               return;
           }

           // The node is not a leaf.
           //  Calculate lastPos on its children.
           calcLastPos(n.fLeftChild);
           calcLastPos(n.fRightChild);

           // Apply functions from table 3.40 in Aho
           if (n.fType == RBBINode.opOr) {
               n.fLastPosSet.addAll(n.fLeftChild.fLastPosSet);
               n.fLastPosSet.addAll(n.fRightChild.fLastPosSet);
           }
           else if (n.fType == RBBINode.opCat) {
               n.fLastPosSet.addAll(n.fRightChild.fLastPosSet);
               if (n.fRightChild.fNullable) {
                   n.fLastPosSet.addAll(n.fLeftChild.fLastPosSet);
               }
           }
           else if (n.fType == RBBINode.opStar     ||
                    n.fType == RBBINode.opQuestion ||
                    n.fType == RBBINode.opPlus) {
               n.fLastPosSet.addAll(n.fLeftChild.fLastPosSet);
           }
       }



       //-----------------------------------------------------------------------------
       //
       //   calcFollowPos.    Impossible to explain succinctly.  See Aho, section 3.9
       //
       //-----------------------------------------------------------------------------
       void calcFollowPos(RBBINode n) {
           if (n == null ||
               n.fType == RBBINode.leafChar ||
               n.fType == RBBINode.endMark) {
               return;
           }

           calcFollowPos(n.fLeftChild);
           calcFollowPos(n.fRightChild);

           // Aho rule #1
           if (n.fType == RBBINode.opCat) {
               for (RBBINode i /* is 'i' in Aho's description */ : n.fLeftChild.fLastPosSet) {
                   i.fFollowPos.addAll(n.fRightChild.fFirstPosSet);
               }
           }

           // Aho rule #2
           if (n.fType == RBBINode.opStar ||
               n.fType == RBBINode.opPlus) {
               for (RBBINode i /* again, n and i are the names from Aho's description */ : n.fLastPosSet) {
                   i.fFollowPos.addAll(n.fFirstPosSet);
               }
           }
       }

       //-----------------------------------------------------------------------------
       //
       //           addRuleRootNodes    Recursively walk a parse tree, adding all nodes flagged
       //                               as roots of a rule to a destination vector.
       //
       //-----------------------------------------------------------------------------
       void addRuleRootNodes(List dest, RBBINode node) {
           if (node == null) {
               return;
           }
           if (node.fRuleRoot) {
               dest.add(node);
               // Note: rules cannot nest. If we found a rule start node,
               //       no child node can also be a start node.
               return;
           }
           addRuleRootNodes(dest, node.fLeftChild);
           addRuleRootNodes(dest, node.fRightChild);
       }

       //-----------------------------------------------------------------------------
       //
       //   calcChainedFollowPos.    Modify the previously calculated followPos sets
       //                            to implement rule chaining.  NOT described by Aho
       //
       //-----------------------------------------------------------------------------
       void calcChainedFollowPos(RBBINode tree) {

           List endMarkerNodes = new ArrayList();
           List leafNodes      = new ArrayList();

            // get a list of all endmarker nodes.
           tree.findNodes(endMarkerNodes, RBBINode.endMark);

           // get a list all leaf nodes
           tree.findNodes(leafNodes, RBBINode.leafChar);

           // Collect all leaf nodes that can start matches for rules
           // with inbound chaining enabled, which is the union of the
           // firstPosition sets from each of the rule root nodes.

           List ruleRootNodes = new ArrayList();
           addRuleRootNodes(ruleRootNodes, tree);

           Set matchStartNodes = new HashSet();
           for (RBBINode node: ruleRootNodes) {
               if (node.fChainIn) {
                   matchStartNodes.addAll(node.fFirstPosSet);
               }
           }

           // Iterate over all leaf nodes,
           //
           for (RBBINode tNode : leafNodes) {
               RBBINode endNode = null;

               // Identify leaf nodes that correspond to overall rule match positions.
               //   These include an endMarkerNode in their followPos sets.
               for (RBBINode endMarkerNode : endMarkerNodes) {
                   if (tNode.fFollowPos.contains(endMarkerNode)) {
                       endNode = tNode;
                       break;
                   }
               }
               if (endNode == null) {
                   // node wasn't an end node.  Try again with the next.
                   continue;
               }

               // We've got a node that can end a match.

               // Line Break Specific hack:  If this node's val correspond to the $CM char class,
               //                            don't chain from it.
               // TODO:  Add rule syntax for this behavior, get specifics out of here and
               //        into the rule file.
               if (fRB.fLBCMNoChain) {
                   int c = this.fRB.fSetBuilder.getFirstChar(endNode.fVal);
                   if (c != -1) {
                       // c == -1 occurs with sets containing only the {eof} marker string.
                       int cLBProp = UCharacter.getIntPropertyValue(c, UProperty.LINE_BREAK);
                       if (cLBProp == UCharacter.LineBreak.COMBINING_MARK) {
                           continue;
                       }
                   }
               }


               // Now iterate over the nodes that can start a match, looking for ones
               //   with the same char class as our ending node.
               for (RBBINode startNode : matchStartNodes) {
                   if (startNode.fType != RBBINode.leafChar) {
                       continue;
                   }

                   if (endNode.fVal == startNode.fVal) {
                       // The end val (character class) of one possible match is the
                       //   same as the start of another.

                       // Add all nodes from the followPos of the start node to the
                       //  followPos set of the end node, which will have the effect of
                       //  letting matches transition from a match state at endNode
                       //  to the second char of a match starting with startNode.
                       endNode.fFollowPos.addAll(startNode.fFollowPos);
                   }
               }
           }
       }


       //-----------------------------------------------------------------------------
       //
       //   bofFixup.    Fixup for state tables that include {bof} beginning of input testing.
       //                Do an swizzle similar to chaining, modifying the followPos set of
       //                the bofNode to include the followPos nodes from other {bot} nodes
       //                scattered through the tree.
       //
       //                This function has much in common with calcChainedFollowPos().
       //
       //-----------------------------------------------------------------------------
       void bofFixup() {
           //
           //   The parse tree looks like this ...
           //         fTree root  --.       
           //                               /     \
           //                               <#end node>
           //                           /     \
           //                        rest
           //                               of tree
           //
           //    We will be adding things to the followPos set of the 
           //
           RBBINode  bofNode = fRB.fTreeRoots[fRootIx].fLeftChild.fLeftChild;
           Assert.assrt(bofNode.fType == RBBINode.leafChar);
           Assert.assrt(bofNode.fVal == 2);

           // Get all nodes that can be the start a match of the user-written rules
           //  (excluding the fake bofNode)
           //  We want the nodes that can start a match in the
           //     part labeled "rest of tree"
           //
           Set matchStartNodes = fRB.fTreeRoots[fRootIx].fLeftChild.fRightChild.fFirstPosSet;
           for (RBBINode startNode : matchStartNodes) {
               if (startNode.fType != RBBINode.leafChar) {
                   continue;
               }

               if (startNode.fVal == bofNode.fVal) {
                   //  We found a leaf node corresponding to a {bof} that was
                   //    explicitly written into a rule.
                   //  Add everything from the followPos set of this node to the
                   //    followPos set of the fake bofNode at the start of the tree.
                   //
                   bofNode.fFollowPos.addAll(startNode.fFollowPos);
               }
           }
       }

       //-----------------------------------------------------------------------------
       //
       //   buildStateTable()    Determine the set of runtime DFA states and the
       //                        transition tables for these states, by the algorithm
       //                        of fig. 3.44 in Aho.
       //
       //                        Most of the comments are quotes of Aho's psuedo-code.
       //
       //-----------------------------------------------------------------------------
       void buildStateTable() {
           //
           // Add a dummy state 0 - the stop state.  Not from Aho.
           int      lastInputSymbol = fRB.fSetBuilder.getNumCharCategories() - 1;
           RBBIStateDescriptor failState = new RBBIStateDescriptor(lastInputSymbol);
           fDStates.add(failState);

           // initially, the only unmarked state in Dstates is firstpos(root),
           //       where toot is the root of the syntax tree for (r)#;
           RBBIStateDescriptor initialState = new RBBIStateDescriptor(lastInputSymbol);
           initialState.fPositions.addAll(fRB.fTreeRoots[fRootIx].fFirstPosSet);
           fDStates.add(initialState);

           // while there is an unmarked state T in Dstates do begin
           for (;;) {
               RBBIStateDescriptor T = null;
               int              tx;
               for (tx=1; tx U = null;
                   for (RBBINode p : T.fPositions) {
                       if ((p.fType == RBBINode.leafChar) &&  (p.fVal == a)) {
                           if (U == null) {
                               U = new HashSet();
                           }
                           U.addAll(p.fFollowPos);
                       }
                   }

                   // if U is not empty and not in DStates then
                   int  ux = 0;
                   boolean    UinDstates = false;
                   if (U != null) {
                       Assert.assrt(U.size() > 0);
                       int  ix;
                       for (ix=0; ix endMarkerNodes = new ArrayList();
           RBBINode    endMarker;
           int     i;
           int     n;

           fRB.fTreeRoots[fRootIx].findNodes(endMarkerNodes, RBBINode.endMark);

           for (i=0; i= 0) {
                   if (sd.fPositions.contains(endMarker)) {
                       // Any non-zero value for fAccepting means this is an accepting node.
                       // The value is what will be returned to the user as the break status.
                       // If no other value was specified, force it to -1.

                       if (sd.fAccepting==0) {
                        // State hasn't been marked as accepting yet.  Do it now.
                           sd.fAccepting = endMarker.fVal;
                           if (sd.fAccepting == 0) {
                               sd.fAccepting = -1;
                        }
                       }
                       if (sd.fAccepting==-1 && endMarker.fVal != 0) {
                        // Both lookahead and non-lookahead accepting for this state.
                        // Favor the look-ahead.  Expedient for line break.
                        // TODO:  need a more elegant resolution for conflicting rules.
                        sd.fAccepting = endMarker.fVal;
                    }
                        // implicit else:
                        // if sd.fAccepting already had a value other than 0 or -1, leave it be.

                       // If the end marker node is from a look-ahead rule, set
                       //   the fLookAhead field or this state also.
                       if (endMarker.fLookAheadEnd) {
                        // TODO:  don't change value if already set?
                        // TODO:  allow for more than one active look-ahead rule in engine.
                        //        Make value here an index to a side array in engine?
                           sd.fLookAhead = sd.fAccepting;
                       }
                   }
               }
           }
       }


       //-----------------------------------------------------------------------------
       //
       //    flagLookAheadStates   Very similar to flagAcceptingStates, above.
       //
       //-----------------------------------------------------------------------------
       void     flagLookAheadStates() {
           List lookAheadNodes = new ArrayList();
           RBBINode    lookAheadNode;
           int     i;
           int     n;

           fRB.fTreeRoots[fRootIx].findNodes(lookAheadNodes, RBBINode.lookAhead);
           for (i=0; i tagNodes = new ArrayList();
           RBBINode    tagNode;
           int     i;
           int     n;

           fRB.fTreeRoots[fRootIx].findNodes(tagNodes, RBBINode.tag);
           for (i=0; i s0 = new TreeSet();
               Integer izero = Integer.valueOf(0);
               fRB.fStatusSets.put(s0, izero);
               SortedSet s1 = new TreeSet();
               s1.add(izero);
               fRB.fStatusSets.put(s0, izero);
           }

           //    For each state, check whether the state's status tag values are
           //       already entered into the status values array, and add them if not.
           for (n=0; n statusVals = sd.fTagVals;
               Integer arrayIndexI = fRB.fStatusSets.get(statusVals);
               if (arrayIndexI == null) {
                   // This is the first encounter of this set of status values.
                   //   Add them to the statusSets map, This map associates
                   //   the set of status values with an index in the runtime status
                   //   values array.
                   arrayIndexI = Integer.valueOf(fRB.fRuleStatusVals.size());
                   fRB.fStatusSets.put(statusVals, arrayIndexI);

                   // Add the new set of status values to the vector of values that
                   //   will eventually become the array used by the runtime engine.
                   fRB.fRuleStatusVals.add(Integer.valueOf(statusVals.size()));
                   fRB.fRuleStatusVals.addAll(statusVals);
               }

               // Save the runtime array index back into the state descriptor.
               sd.fTagsIdx = arrayIndexI.intValue();
           }
       }







       //-----------------------------------------------------------------------------
       //
       //  printPosSets   Debug function.  Dump Nullable, firstpos, lastpos and followpos
       //                 for each node in the tree.
       //
       //-----------------------------------------------------------------------------

       void printPosSets(RBBINode n) {
           if (n==null) {
               return;
           }
           RBBINode.printNode(n);
           System.out.print("         Nullable:  " + n.fNullable);

           System.out.print("         firstpos:  ");
           printSet(n.fFirstPosSet);

           System.out.print("         lastpos:   ");
           printSet(n.fLastPosSet);

           System.out.print("         followpos: ");
           printSet(n.fFollowPos);

           printPosSets(n.fLeftChild);
           printPosSets(n.fRightChild);
       }




       //-----------------------------------------------------------------------------
       //
       //   getTableSize()    Calculate the size in bytes of the runtime form of this
       //                     state transition table.
       //
       //          Note:  Refer to common/rbbidata.h from ICU4C for the declarations
       //                 of the structures being matched by this calculation.
       //
       //-----------------------------------------------------------------------------
       int  getTableSize()  {
           int    size = 0;
           int    numRows;
           int    numCols;
           int    rowSize;

           if (fRB.fTreeRoots[fRootIx] == null) {
               return 0;
           }

           size    = /*sizeof(RBBIStateTable) - 4 */ 16;    // The header, with no rows to the table.

           numRows = fDStates.size();
           numCols = fRB.fSetBuilder.getNumCharCategories();

           //  Note  The declaration of RBBIStateTableRow is for a table of two columns.
           //        Therefore we subtract two from numCols when determining
           //        how much storage to add to a row for the total columns.
           // rowSize = sizeof(RBBIStateTableRow) + sizeof(uint16_t)*(numCols-2);
           rowSize = 8 + 2*numCols;
           size   += numRows * rowSize;
           while (size % 8 > 0) {    // Size must be multiple of 8 bytes in size.
               size++;
           }

           return size;
       }



       //-----------------------------------------------------------------------------
       //
       //   exportTable()    export the state transition table in the ICU4C format.
       //
       //                    Most of the table is 16 bit shorts.  This function exports
       //                    the whole thing as an array of shorts.
       //
       //                    The size of the array must be rounded up to a multiple of
       //                    8 bytes.
       //
       //                    See struct RBBIStateTable in ICU4C, common/rbbidata.h
       //
       //-----------------------------------------------------------------------------

       short [] exportTable() {
           int                state;
           int                col;

           if (fRB.fTreeRoots[fRootIx] == null) {
               return new short[0];
           }

           Assert.assrt(fRB.fSetBuilder.getNumCharCategories() < 0x7fff &&
               fDStates.size() < 0x7fff);

           int numStates = fDStates.size();

           // Size of table size in shorts.
           //  the "4" is the size of struct RBBIStateTableRow, the row header part only.
           int rowLen = 4 + fRB.fSetBuilder.getNumCharCategories();
           int tableSize = getTableSize() / 2;


           short [] table = new short[tableSize];

           //
           // Fill in the header fields.
           //      Annoying because they really want to be ints, not shorts.
           //
           // RBBIStateTable.fNumStates
           table[RBBIDataWrapper.NUMSTATES]   = (short)(numStates >>> 16);
           table[RBBIDataWrapper.NUMSTATES+1] = (short)(numStates & 0x0000ffff);

           // RBBIStateTable.fRowLen
           table[RBBIDataWrapper.ROWLEN]   = (short)(rowLen >>> 16);
           table[RBBIDataWrapper.ROWLEN+1] = (short)(rowLen & 0x0000ffff);

           // RBBIStateTable.fFlags
           int flags = 0;
           if (fRB.fLookAheadHardBreak) {
               flags  |= RBBIDataWrapper.RBBI_LOOKAHEAD_HARD_BREAK;
           }
           if (fRB.fSetBuilder.sawBOF()) {
               flags  |= RBBIDataWrapper.RBBI_BOF_REQUIRED;
           }
           table[RBBIDataWrapper.FLAGS]   = (short)(flags >>> 16);
           table[RBBIDataWrapper.FLAGS+1] = (short)(flags & 0x0000ffff);

           int numCharCategories = fRB.fSetBuilder.getNumCharCategories();
           for (state=0; state s) {
           for (RBBINode n : s) {
               RBBINode.printInt(n.fSerialNum, 8);
           }
           System.out.println();
       }



       //-----------------------------------------------------------------------------
       //
       //   printStates    Debug Function.  Dump the fully constructed state transition table.
       //
       //-----------------------------------------------------------------------------

       void printStates() {
           int     c;    // input "character"
           int     n;    // state number

           System.out.print("state |           i n p u t     s y m b o l s \n");
           System.out.print("      | Acc  LA    Tag");
           for (c=0; c tbl = fRB.fRuleStatusVals;

           System.out.print("index |  tags \n");
           System.out.print("-------------------\n");

           while (nextRecord < tbl.size()) {
               thisRecord = nextRecord;
               nextRecord = thisRecord + tbl.get(thisRecord).intValue() + 1;
               RBBINode.printInt(thisRecord, 7);
               for (i=thisRecord+1; i




© 2015 - 2025 Weber Informatics LLC | Privacy Policy