io.virtdata.stathelpers.aliasmethod.AliasSamplerDoubleInt Maven / Gradle / Ivy
package io.virtdata.stathelpers.aliasmethod;
import io.virtdata.stathelpers.EvProbD;
import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
import java.util.function.DoubleToIntFunction;
import java.util.stream.Collectors;
/**
* Uses the alias sampling method to encode and sample from discrete probabilities,
* even over larger sets of data. This form requires a unit interval sample value
* between 0.0 and 1.0. Assuming the maximal amount of memory is used for distinct
* outcomes N, a memory buffer of N*16 bytes is required for this implementation,
* requiring 32MB of memory for 1M entries.
*
* This sampler should be shared between threads, and will be by default, in order
* to avoid many instances of a 32MB buffer on heap.
*/
public class AliasSamplerDoubleInt implements DoubleToIntFunction {
private ByteBuffer stats; // tuples of double,int,int (unfair coin, direct pointers to referents)
private double slotCount; // The number of fair die-roll slotCount that contain unfair coin probabilities
private static int _r0=0;
private static int _r1=_r0+Double.BYTES;
private static int _r2=_r1+Integer.BYTES;
public static int RECORD_LEN = _r2 + Integer.BYTES; // Record size for the above.
// for testing
AliasSamplerDoubleInt(ByteBuffer stats) {
this.stats = stats;
if ((stats.capacity()% RECORD_LEN)!=0) {
throw new RuntimeException("Misaligned ByteBuffer size, must be a multiple of " + RECORD_LEN);
}
slotCount = (stats.capacity()/ RECORD_LEN);
}
public AliasSamplerDoubleInt(List events) {
int size = events.size();
int[] alias = new int[events.size()];
double[] prob = new double[events.size()];
LinkedList small = new LinkedList<>();
LinkedList large = new LinkedList<>();
List slots = new ArrayList<>();
// array-size normalization
double sumProbability = events.stream().mapToDouble(EvProbD::getProbability).sum();
events = events.stream().map(e -> new EvProbD(e.getEventId(), (e.getProbability()/sumProbability)*size)).collect(Collectors.toList());
// presort
for (EvProbD event : events) {
(event.getProbability()<1.0D ? small : large).addLast(event);
}
while (small.peekFirst()!=null && large.peekFirst()!=null) {
EvProbD l = small.removeFirst();
EvProbD g = large.removeFirst();
slots.add(new Slot(g.getEventId(), l.getEventId(), l.getProbability()));
g.setProbability((g.getProbability()+l.getProbability())-1);
(g.getProbability()<1.0D ? small : large).addLast(g); // requeue
}
while (large.peekFirst()!=null) {
EvProbD g = large.removeFirst();
slots.add(new Slot(g.getEventId(),g.getEventId(),1.0));
}
while (small.peekFirst()!=null) {
EvProbD l = small.removeFirst();
slots.add(new Slot(l.getEventId(),l.getEventId(),1.0));
}
if (slots.size()!=size) {
throw new RuntimeException("basis for average probability is incorrect, because only " + slots.size() + " slotCount of " + size + " were created.");
}
// align to indexes
for (int i = 0; i < slots.size(); i++) {
slots.get(i).rescale(i, i+1);
}
this.stats = ByteBuffer.allocate(slots.size()* RECORD_LEN);
for (Slot slot : slots) {
stats.putDouble(slot.botProb);
stats.putInt(slot.botItx);
stats.putInt(slot.topIdx);
}
stats.flip();
this.slotCount = (stats.capacity()/ RECORD_LEN);
}
@Override
public int applyAsInt(double value) {
double fractionlPoint = value * slotCount;
int offsetPoint = (int) fractionlPoint * RECORD_LEN;
double divider = stats.getDouble(offsetPoint);
int selector = offsetPoint+ (fractionlPoint>divider?_r2:_r1);
int referentId = stats.getInt(selector);
return referentId;
}
private static class Slot {
public int topIdx;
public int botItx;
public double botProb;
public Slot(int topIdx, int botItx, double botProb) {
this.topIdx = topIdx;
this.botItx = botItx;
this.botProb = botProb;
}
public String toString() {
return "top:" + topIdx + ", bot:" + botItx + ", botProb: " + botProb;
}
public Slot rescale(double min, double max) {
botProb = (min + (botProb*(max-min)));
return this;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy