org.apache.commons.math3.ml.neuralnet.Network Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.ml.neuralnet;
import java.io.Serializable;
import java.io.ObjectInputStream;
import java.util.NoSuchElementException;
import java.util.List;
import java.util.ArrayList;
import java.util.Set;
import java.util.HashSet;
import java.util.Collection;
import java.util.Iterator;
import java.util.Comparator;
import java.util.Collections;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.atomic.AtomicLong;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MathIllegalStateException;
/**
* Neural network, composed of {@link Neuron} instances and the links
* between them.
*
* Although updating a neuron's state is thread-safe, modifying the
* network's topology (adding or removing links) is not.
*
* @since 3.3
*/
public class Network
implements Iterable,
Serializable {
/** Serializable. */
private static final long serialVersionUID = 20130207L;
/** Neurons. */
private final ConcurrentHashMap neuronMap
= new ConcurrentHashMap();
/** Next available neuron identifier. */
private final AtomicLong nextId;
/** Neuron's features set size. */
private final int featureSize;
/** Links. */
private final ConcurrentHashMap> linkMap
= new ConcurrentHashMap>();
/**
* Comparator that prescribes an order of the neurons according
* to the increasing order of their identifier.
*/
public static class NeuronIdentifierComparator
implements Comparator,
Serializable {
/** Version identifier. */
private static final long serialVersionUID = 20130207L;
/** {@inheritDoc} */
public int compare(Neuron a,
Neuron b) {
final long aId = a.getIdentifier();
final long bId = b.getIdentifier();
return aId < bId ? -1 :
aId > bId ? 1 : 0;
}
}
/**
* Constructor with restricted access, solely used for deserialization.
*
* @param nextId Next available identifier.
* @param featureSize Number of features.
* @param neuronList Neurons.
* @param neighbourIdList Links associated to each of the neurons in
* {@code neuronList}.
* @throws MathIllegalStateException if an inconsistency is detected
* (which probably means that the serialized form has been corrupted).
*/
Network(long nextId,
int featureSize,
Neuron[] neuronList,
long[][] neighbourIdList) {
final int numNeurons = neuronList.length;
if (numNeurons != neighbourIdList.length) {
throw new MathIllegalStateException();
}
for (int i = 0; i < numNeurons; i++) {
final Neuron n = neuronList[i];
final long id = n.getIdentifier();
if (id >= nextId) {
throw new MathIllegalStateException();
}
neuronMap.put(id, n);
linkMap.put(id, new HashSet());
}
for (int i = 0; i < numNeurons; i++) {
final long aId = neuronList[i].getIdentifier();
final Set aLinks = linkMap.get(aId);
for (Long bId : neighbourIdList[i]) {
if (neuronMap.get(bId) == null) {
throw new MathIllegalStateException();
}
addLinkToLinkSet(aLinks, bId);
}
}
this.nextId = new AtomicLong(nextId);
this.featureSize = featureSize;
}
/**
* @param initialIdentifier Identifier for the first neuron that
* will be added to this network.
* @param featureSize Size of the neuron's features.
*/
public Network(long initialIdentifier,
int featureSize) {
nextId = new AtomicLong(initialIdentifier);
this.featureSize = featureSize;
}
/**
* Performs a deep copy of this instance.
* Upon return, the copied and original instances will be independent:
* Updating one will not affect the other.
*
* @return a new instance with the same state as this instance.
* @since 3.6
*/
public synchronized Network copy() {
final Network copy = new Network(nextId.get(),
featureSize);
for (Map.Entry e : neuronMap.entrySet()) {
copy.neuronMap.put(e.getKey(), e.getValue().copy());
}
for (Map.Entry> e : linkMap.entrySet()) {
copy.linkMap.put(e.getKey(), new HashSet(e.getValue()));
}
return copy;
}
/**
* {@inheritDoc}
*/
public Iterator iterator() {
return neuronMap.values().iterator();
}
/**
* Creates a list of the neurons, sorted in a custom order.
*
* @param comparator {@link Comparator} used for sorting the neurons.
* @return a list of neurons, sorted in the order prescribed by the
* given {@code comparator}.
* @see NeuronIdentifierComparator
*/
public Collection getNeurons(Comparator comparator) {
final List neurons = new ArrayList();
neurons.addAll(neuronMap.values());
Collections.sort(neurons, comparator);
return neurons;
}
/**
* Creates a neuron and assigns it a unique identifier.
*
* @param features Initial values for the neuron's features.
* @return the neuron's identifier.
* @throws DimensionMismatchException if the length of {@code features}
* is different from the expected size (as set by the
* {@link #Network(long,int) constructor}).
*/
public long createNeuron(double[] features) {
if (features.length != featureSize) {
throw new DimensionMismatchException(features.length, featureSize);
}
final long id = createNextId();
neuronMap.put(id, new Neuron(id, features));
linkMap.put(id, new HashSet());
return id;
}
/**
* Deletes a neuron.
* Links from all neighbours to the removed neuron will also be
* {@link #deleteLink(Neuron,Neuron) deleted}.
*
* @param neuron Neuron to be removed from this network.
* @throws NoSuchElementException if {@code n} does not belong to
* this network.
*/
public void deleteNeuron(Neuron neuron) {
final Collection neighbours = getNeighbours(neuron);
// Delete links to from neighbours.
for (Neuron n : neighbours) {
deleteLink(n, neuron);
}
// Remove neuron.
neuronMap.remove(neuron.getIdentifier());
}
/**
* Gets the size of the neurons' features set.
*
* @return the size of the features set.
*/
public int getFeaturesSize() {
return featureSize;
}
/**
* Adds a link from neuron {@code a} to neuron {@code b}.
* Note: the link is not bi-directional; if a bi-directional link is
* required, an additional call must be made with {@code a} and
* {@code b} exchanged in the argument list.
*
* @param a Neuron.
* @param b Neuron.
* @throws NoSuchElementException if the neurons do not exist in the
* network.
*/
public void addLink(Neuron a,
Neuron b) {
final long aId = a.getIdentifier();
final long bId = b.getIdentifier();
// Check that the neurons belong to this network.
if (a != getNeuron(aId)) {
throw new NoSuchElementException(Long.toString(aId));
}
if (b != getNeuron(bId)) {
throw new NoSuchElementException(Long.toString(bId));
}
// Add link from "a" to "b".
addLinkToLinkSet(linkMap.get(aId), bId);
}
/**
* Adds a link to neuron {@code id} in given {@code linkSet}.
* Note: no check verifies that the identifier indeed belongs
* to this network.
*
* @param linkSet Neuron identifier.
* @param id Neuron identifier.
*/
private void addLinkToLinkSet(Set linkSet,
long id) {
linkSet.add(id);
}
/**
* Deletes the link between neurons {@code a} and {@code b}.
*
* @param a Neuron.
* @param b Neuron.
* @throws NoSuchElementException if the neurons do not exist in the
* network.
*/
public void deleteLink(Neuron a,
Neuron b) {
final long aId = a.getIdentifier();
final long bId = b.getIdentifier();
// Check that the neurons belong to this network.
if (a != getNeuron(aId)) {
throw new NoSuchElementException(Long.toString(aId));
}
if (b != getNeuron(bId)) {
throw new NoSuchElementException(Long.toString(bId));
}
// Delete link from "a" to "b".
deleteLinkFromLinkSet(linkMap.get(aId), bId);
}
/**
* Deletes a link to neuron {@code id} in given {@code linkSet}.
* Note: no check verifies that the identifier indeed belongs
* to this network.
*
* @param linkSet Neuron identifier.
* @param id Neuron identifier.
*/
private void deleteLinkFromLinkSet(Set linkSet,
long id) {
linkSet.remove(id);
}
/**
* Retrieves the neuron with the given (unique) {@code id}.
*
* @param id Identifier.
* @return the neuron associated with the given {@code id}.
* @throws NoSuchElementException if the neuron does not exist in the
* network.
*/
public Neuron getNeuron(long id) {
final Neuron n = neuronMap.get(id);
if (n == null) {
throw new NoSuchElementException(Long.toString(id));
}
return n;
}
/**
* Retrieves the neurons in the neighbourhood of any neuron in the
* {@code neurons} list.
* @param neurons Neurons for which to retrieve the neighbours.
* @return the list of neighbours.
* @see #getNeighbours(Iterable,Iterable)
*/
public Collection getNeighbours(Iterable neurons) {
return getNeighbours(neurons, null);
}
/**
* Retrieves the neurons in the neighbourhood of any neuron in the
* {@code neurons} list.
* The {@code exclude} list allows to retrieve the "concentric"
* neighbourhoods by removing the neurons that belong to the inner
* "circles".
*
* @param neurons Neurons for which to retrieve the neighbours.
* @param exclude Neurons to exclude from the returned list.
* Can be {@code null}.
* @return the list of neighbours.
*/
public Collection getNeighbours(Iterable neurons,
Iterable exclude) {
final Set idList = new HashSet();
for (Neuron n : neurons) {
idList.addAll(linkMap.get(n.getIdentifier()));
}
if (exclude != null) {
for (Neuron n : exclude) {
idList.remove(n.getIdentifier());
}
}
final List neuronList = new ArrayList();
for (Long id : idList) {
neuronList.add(getNeuron(id));
}
return neuronList;
}
/**
* Retrieves the neighbours of the given neuron.
*
* @param neuron Neuron for which to retrieve the neighbours.
* @return the list of neighbours.
* @see #getNeighbours(Neuron,Iterable)
*/
public Collection getNeighbours(Neuron neuron) {
return getNeighbours(neuron, null);
}
/**
* Retrieves the neighbours of the given neuron.
*
* @param neuron Neuron for which to retrieve the neighbours.
* @param exclude Neurons to exclude from the returned list.
* Can be {@code null}.
* @return the list of neighbours.
*/
public Collection getNeighbours(Neuron neuron,
Iterable exclude) {
final Set idList = linkMap.get(neuron.getIdentifier());
if (exclude != null) {
for (Neuron n : exclude) {
idList.remove(n.getIdentifier());
}
}
final List neuronList = new ArrayList();
for (Long id : idList) {
neuronList.add(getNeuron(id));
}
return neuronList;
}
/**
* Creates a neuron identifier.
*
* @return a value that will serve as a unique identifier.
*/
private Long createNextId() {
return nextId.getAndIncrement();
}
/**
* Prevents proxy bypass.
*
* @param in Input stream.
*/
private void readObject(ObjectInputStream in) {
throw new IllegalStateException();
}
/**
* Custom serialization.
*
* @return the proxy instance that will be actually serialized.
*/
private Object writeReplace() {
final Neuron[] neuronList = neuronMap.values().toArray(new Neuron[0]);
final long[][] neighbourIdList = new long[neuronList.length][];
for (int i = 0; i < neuronList.length; i++) {
final Collection neighbours = getNeighbours(neuronList[i]);
final long[] neighboursId = new long[neighbours.size()];
int count = 0;
for (Neuron n : neighbours) {
neighboursId[count] = n.getIdentifier();
++count;
}
neighbourIdList[i] = neighboursId;
}
return new SerializationProxy(nextId.get(),
featureSize,
neuronList,
neighbourIdList);
}
/**
* Serialization.
*/
private static class SerializationProxy implements Serializable {
/** Serializable. */
private static final long serialVersionUID = 20130207L;
/** Next identifier. */
private final long nextId;
/** Number of features. */
private final int featureSize;
/** Neurons. */
private final Neuron[] neuronList;
/** Links. */
private final long[][] neighbourIdList;
/**
* @param nextId Next available identifier.
* @param featureSize Number of features.
* @param neuronList Neurons.
* @param neighbourIdList Links associated to each of the neurons in
* {@code neuronList}.
*/
SerializationProxy(long nextId,
int featureSize,
Neuron[] neuronList,
long[][] neighbourIdList) {
this.nextId = nextId;
this.featureSize = featureSize;
this.neuronList = neuronList;
this.neighbourIdList = neighbourIdList;
}
/**
* Custom serialization.
*
* @return the {@link Network} for which this instance is the proxy.
*/
private Object readResolve() {
return new Network(nextId,
featureSize,
neuronList,
neighbourIdList);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy