All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.ode.nonstiff.AdamsBashforthIntegrator Maven / Gradle / Ivy

There is a newer version: 2.12.15
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.NoBracketingException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.linear.Array2DRowRealMatrix;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.ode.EquationsMapper;
import org.apache.commons.math3.ode.ExpandableStatefulODE;
import org.apache.commons.math3.ode.sampling.NordsieckStepInterpolator;
import org.apache.commons.math3.util.FastMath;


/**
 * This class implements explicit Adams-Bashforth integrators for Ordinary
 * Differential Equations.
 *
 * 

Adams-Bashforth methods (in fact due to Adams alone) are explicit * multistep ODE solvers. This implementation is a variation of the classical * one: it uses adaptive stepsize to implement error control, whereas * classical implementations are fixed step size. The value of state vector * at step n+1 is a simple combination of the value at step n and of the * derivatives at steps n, n-1, n-2 ... Depending on the number k of previous * steps one wants to use for computing the next value, different formulas * are available:

*
    *
  • k = 1: yn+1 = yn + h y'n
  • *
  • k = 2: yn+1 = yn + h (3y'n-y'n-1)/2
  • *
  • k = 3: yn+1 = yn + h (23y'n-16y'n-1+5y'n-2)/12
  • *
  • k = 4: yn+1 = yn + h (55y'n-59y'n-1+37y'n-2-9y'n-3)/24
  • *
  • ...
  • *
* *

A k-steps Adams-Bashforth method is of order k.

* *

Implementation details

* *

We define scaled derivatives si(n) at step n as: *

 * s1(n) = h y'n for first derivative
 * s2(n) = h2/2 y''n for second derivative
 * s3(n) = h3/6 y'''n for third derivative
 * ...
 * sk(n) = hk/k! y(k)n for kth derivative
 * 

* *

The definitions above use the classical representation with several previous first * derivatives. Lets define *

 *   qn = [ s1(n-1) s1(n-2) ... s1(n-(k-1)) ]T
 * 
* (we omit the k index in the notation for clarity). With these definitions, * Adams-Bashforth methods can be written: *
    *
  • k = 1: yn+1 = yn + s1(n)
  • *
  • k = 2: yn+1 = yn + 3/2 s1(n) + [ -1/2 ] qn
  • *
  • k = 3: yn+1 = yn + 23/12 s1(n) + [ -16/12 5/12 ] qn
  • *
  • k = 4: yn+1 = yn + 55/24 s1(n) + [ -59/24 37/24 -9/24 ] qn
  • *
  • ...
  • *

* *

Instead of using the classical representation with first derivatives only (yn, * s1(n) and qn), our implementation uses the Nordsieck vector with * higher degrees scaled derivatives all taken at the same step (yn, s1(n) * and rn) where rn is defined as: *

 * rn = [ s2(n), s3(n) ... sk(n) ]T
 * 
* (here again we omit the k index in the notation for clarity) *

* *

Taylor series formulas show that for any index offset i, s1(n-i) can be * computed from s1(n), s2(n) ... sk(n), the formula being exact * for degree k polynomials. *

 * s1(n-i) = s1(n) + ∑j>0 (j+1) (-i)j sj+1(n)
 * 
* The previous formula can be used with several values for i to compute the transform between * classical representation and Nordsieck vector. The transform between rn * and qn resulting from the Taylor series formulas above is: *
 * qn = s1(n) u + P rn
 * 
* where u is the [ 1 1 ... 1 ]T vector and P is the (k-1)×(k-1) matrix built * with the (j+1) (-i)j terms with i being the row number starting from 1 and j being * the column number starting from 1: *
 *        [  -2   3   -4    5  ... ]
 *        [  -4  12  -32   80  ... ]
 *   P =  [  -6  27 -108  405  ... ]
 *        [  -8  48 -256 1280  ... ]
 *        [          ...           ]
 * 

* *

Using the Nordsieck vector has several advantages: *

    *
  • it greatly simplifies step interpolation as the interpolator mainly applies * Taylor series formulas,
  • *
  • it simplifies step changes that occur when discrete events that truncate * the step are triggered,
  • *
  • it allows to extend the methods in order to support adaptive stepsize.
  • *

* *

The Nordsieck vector at step n+1 is computed from the Nordsieck vector at step n as follows: *

    *
  • yn+1 = yn + s1(n) + uT rn
  • *
  • s1(n+1) = h f(tn+1, yn+1)
  • *
  • rn+1 = (s1(n) - s1(n+1)) P-1 u + P-1 A P rn
  • *
* where A is a rows shifting matrix (the lower left part is an identity matrix): *
 *        [ 0 0   ...  0 0 | 0 ]
 *        [ ---------------+---]
 *        [ 1 0   ...  0 0 | 0 ]
 *    A = [ 0 1   ...  0 0 | 0 ]
 *        [       ...      | 0 ]
 *        [ 0 0   ...  1 0 | 0 ]
 *        [ 0 0   ...  0 1 | 0 ]
 * 

* *

The P-1u vector and the P-1 A P matrix do not depend on the state, * they only depend on k and therefore are precomputed once for all.

* * @since 2.0 */ public class AdamsBashforthIntegrator extends AdamsIntegrator { /** Integrator method name. */ private static final String METHOD_NAME = "Adams-Bashforth"; /** * Build an Adams-Bashforth integrator with the given order and step control parameters. * @param nSteps number of steps of the method excluding the one being computed * @param minStep minimal step (sign is irrelevant, regardless of * integration direction, forward or backward), the last step can * be smaller than this * @param maxStep maximal step (sign is irrelevant, regardless of * integration direction, forward or backward), the last step can * be smaller than this * @param scalAbsoluteTolerance allowed absolute error * @param scalRelativeTolerance allowed relative error * @exception NumberIsTooSmallException if order is 1 or less */ public AdamsBashforthIntegrator(final int nSteps, final double minStep, final double maxStep, final double scalAbsoluteTolerance, final double scalRelativeTolerance) throws NumberIsTooSmallException { super(METHOD_NAME, nSteps, nSteps, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance); } /** * Build an Adams-Bashforth integrator with the given order and step control parameters. * @param nSteps number of steps of the method excluding the one being computed * @param minStep minimal step (sign is irrelevant, regardless of * integration direction, forward or backward), the last step can * be smaller than this * @param maxStep maximal step (sign is irrelevant, regardless of * integration direction, forward or backward), the last step can * be smaller than this * @param vecAbsoluteTolerance allowed absolute error * @param vecRelativeTolerance allowed relative error * @exception IllegalArgumentException if order is 1 or less */ public AdamsBashforthIntegrator(final int nSteps, final double minStep, final double maxStep, final double[] vecAbsoluteTolerance, final double[] vecRelativeTolerance) throws IllegalArgumentException { super(METHOD_NAME, nSteps, nSteps, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance); } /** Estimate error. *

* Error is estimated by interpolating back to previous state using * the state Taylor expansion and comparing to real previous state. *

* @param previousState state vector at step start * @param predictedState predicted state vector at step end * @param predictedScaled predicted value of the scaled derivatives at step end * @param predictedNordsieck predicted value of the Nordsieck vector at step end * @return estimated normalized local discretization error */ private double errorEstimation(final double[] previousState, final double[] predictedState, final double[] predictedScaled, final RealMatrix predictedNordsieck) { double error = 0; for (int i = 0; i < mainSetDimension; ++i) { final double yScale = FastMath.abs(predictedState[i]); final double tol = (vecAbsoluteTolerance == null) ? (scalAbsoluteTolerance + scalRelativeTolerance * yScale) : (vecAbsoluteTolerance[i] + vecRelativeTolerance[i] * yScale); // apply Taylor formula from high order to low order, // for the sake of numerical accuracy double variation = 0; int sign = predictedNordsieck.getRowDimension() % 2 == 0 ? -1 : 1; for (int k = predictedNordsieck.getRowDimension() - 1; k >= 0; --k) { variation += sign * predictedNordsieck.getEntry(k, i); sign = -sign; } variation -= predictedScaled[i]; final double ratio = (predictedState[i] - previousState[i] + variation) / tol; error += ratio * ratio; } return FastMath.sqrt(error / mainSetDimension); } /** {@inheritDoc} */ @Override public void integrate(final ExpandableStatefulODE equations, final double t) throws NumberIsTooSmallException, DimensionMismatchException, MaxCountExceededException, NoBracketingException { sanityChecks(equations, t); setEquations(equations); final boolean forward = t > equations.getTime(); // initialize working arrays final double[] y = equations.getCompleteState(); final double[] yDot = new double[y.length]; // set up an interpolator sharing the integrator arrays final NordsieckStepInterpolator interpolator = new NordsieckStepInterpolator(); interpolator.reinitialize(y, forward, equations.getPrimaryMapper(), equations.getSecondaryMappers()); // set up integration control objects initIntegration(equations.getTime(), y, t); // compute the initial Nordsieck vector using the configured starter integrator start(equations.getTime(), y, t); interpolator.reinitialize(stepStart, stepSize, scaled, nordsieck); interpolator.storeTime(stepStart); // reuse the step that was chosen by the starter integrator double hNew = stepSize; interpolator.rescale(hNew); // main integration loop isLastStep = false; do { interpolator.shift(); final double[] predictedY = new double[y.length]; final double[] predictedScaled = new double[y.length]; Array2DRowRealMatrix predictedNordsieck = null; double error = 10; while (error >= 1.0) { // predict a first estimate of the state at step end final double stepEnd = stepStart + hNew; interpolator.storeTime(stepEnd); final ExpandableStatefulODE expandable = getExpandable(); final EquationsMapper primary = expandable.getPrimaryMapper(); primary.insertEquationData(interpolator.getInterpolatedState(), predictedY); int index = 0; for (final EquationsMapper secondary : expandable.getSecondaryMappers()) { secondary.insertEquationData(interpolator.getInterpolatedSecondaryState(index), predictedY); ++index; } // evaluate the derivative computeDerivatives(stepEnd, predictedY, yDot); // predict Nordsieck vector at step end for (int j = 0; j < predictedScaled.length; ++j) { predictedScaled[j] = hNew * yDot[j]; } predictedNordsieck = updateHighOrderDerivativesPhase1(nordsieck); updateHighOrderDerivativesPhase2(scaled, predictedScaled, predictedNordsieck); // evaluate error error = errorEstimation(y, predictedY, predictedScaled, predictedNordsieck); if (error >= 1.0) { // reject the step and attempt to reduce error by stepsize control final double factor = computeStepGrowShrinkFactor(error); hNew = filterStep(hNew * factor, forward, false); interpolator.rescale(hNew); } } stepSize = hNew; final double stepEnd = stepStart + stepSize; interpolator.reinitialize(stepEnd, stepSize, predictedScaled, predictedNordsieck); // discrete events handling interpolator.storeTime(stepEnd); System.arraycopy(predictedY, 0, y, 0, y.length); stepStart = acceptStep(interpolator, y, yDot, t); scaled = predictedScaled; nordsieck = predictedNordsieck; interpolator.reinitialize(stepEnd, stepSize, scaled, nordsieck); if (!isLastStep) { // prepare next step interpolator.storeTime(stepStart); if (resetOccurred) { // some events handler has triggered changes that // invalidate the derivatives, we need to restart from scratch start(stepStart, y, t); interpolator.reinitialize(stepStart, stepSize, scaled, nordsieck); } // stepsize control for next step final double factor = computeStepGrowShrinkFactor(error); final double scaledH = stepSize * factor; final double nextT = stepStart + scaledH; final boolean nextIsLast = forward ? (nextT >= t) : (nextT <= t); hNew = filterStep(scaledH, forward, nextIsLast); final double filteredNextT = stepStart + hNew; final boolean filteredNextIsLast = forward ? (filteredNextT >= t) : (filteredNextT <= t); if (filteredNextIsLast) { hNew = t - stepStart; } interpolator.rescale(hNew); } } while (!isLastStep); // dispatch results equations.setTime(stepStart); equations.setCompleteState(y); resetInternalState(); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy