All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.ode.nonstiff.DormandPrince54FieldStepInterpolator Maven / Gradle / Ivy

There is a newer version: 2.12.15
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.ode.FieldEquationsMapper;
import org.apache.commons.math3.ode.FieldODEStateAndDerivative;

/**
 * This class represents an interpolator over the last step during an
 * ODE integration for the 5(4) Dormand-Prince integrator.
 *
 * @see DormandPrince54Integrator
 *
 * @param  the type of the field elements
 * @since 3.6
 */

class DormandPrince54FieldStepInterpolator>
      extends RungeKuttaFieldStepInterpolator {

    /** Last row of the Butcher-array internal weights, element 0. */
    private final T a70;

    // element 1 is zero, so it is neither stored nor used

    /** Last row of the Butcher-array internal weights, element 2. */
    private final T a72;

    /** Last row of the Butcher-array internal weights, element 3. */
    private final T a73;

    /** Last row of the Butcher-array internal weights, element 4. */
    private final T a74;

    /** Last row of the Butcher-array internal weights, element 5. */
    private final T a75;

    /** Shampine (1986) Dense output, element 0. */
    private final T d0;

    // element 1 is zero, so it is neither stored nor used

    /** Shampine (1986) Dense output, element 2. */
    private final T d2;

    /** Shampine (1986) Dense output, element 3. */
    private final T d3;

    /** Shampine (1986) Dense output, element 4. */
    private final T d4;

    /** Shampine (1986) Dense output, element 5. */
    private final T d5;

    /** Shampine (1986) Dense output, element 6. */
    private final T d6;

    /** Simple constructor.
     * @param field field to which the time and state vector elements belong
     * @param forward integration direction indicator
     * @param yDotK slopes at the intermediate points
     * @param globalPreviousState start of the global step
     * @param globalCurrentState end of the global step
     * @param softPreviousState start of the restricted step
     * @param softCurrentState end of the restricted step
     * @param mapper equations mapper for the all equations
     */
    DormandPrince54FieldStepInterpolator(final Field field, final boolean forward,
                                         final T[][] yDotK,
                                         final FieldODEStateAndDerivative globalPreviousState,
                                         final FieldODEStateAndDerivative globalCurrentState,
                                         final FieldODEStateAndDerivative softPreviousState,
                                         final FieldODEStateAndDerivative softCurrentState,
                                         final FieldEquationsMapper mapper) {
        super(field, forward, yDotK,
              globalPreviousState, globalCurrentState, softPreviousState, softCurrentState,
              mapper);
        final T one = field.getOne();
        a70 = one.multiply(   35.0).divide( 384.0);
        a72 = one.multiply(  500.0).divide(1113.0);
        a73 = one.multiply(  125.0).divide( 192.0);
        a74 = one.multiply(-2187.0).divide(6784.0);
        a75 = one.multiply(   11.0).divide(  84.0);
        d0  = one.multiply(-12715105075.0).divide( 11282082432.0);
        d2  = one.multiply( 87487479700.0).divide( 32700410799.0);
        d3  = one.multiply(-10690763975.0).divide(  1880347072.0);
        d4  = one.multiply(701980252875.0).divide(199316789632.0);
        d5  = one.multiply( -1453857185.0).divide(   822651844.0);
        d6  = one.multiply(    69997945.0).divide(    29380423.0);
    }

    /** {@inheritDoc} */
    @Override
    protected DormandPrince54FieldStepInterpolator create(final Field newField, final boolean newForward, final T[][] newYDotK,
                                                                 final FieldODEStateAndDerivative newGlobalPreviousState,
                                                                 final FieldODEStateAndDerivative newGlobalCurrentState,
                                                                 final FieldODEStateAndDerivative newSoftPreviousState,
                                                                 final FieldODEStateAndDerivative newSoftCurrentState,
                                                                 final FieldEquationsMapper newMapper) {
        return new DormandPrince54FieldStepInterpolator(newField, newForward, newYDotK,
                                                           newGlobalPreviousState, newGlobalCurrentState,
                                                           newSoftPreviousState, newSoftCurrentState,
                                                           newMapper);
    }
    /** {@inheritDoc} */
    @SuppressWarnings("unchecked")
    @Override
    protected FieldODEStateAndDerivative computeInterpolatedStateAndDerivatives(final FieldEquationsMapper mapper,
                                                                                   final T time, final T theta,
                                                                                   final T thetaH, final T oneMinusThetaH) {

        // interpolate
        final T one      = time.getField().getOne();
        final T eta      = one.subtract(theta);
        final T twoTheta = theta.multiply(2);
        final T dot2     = one.subtract(twoTheta);
        final T dot3     = theta.multiply(theta.multiply(-3).add(2));
        final T dot4     = twoTheta.multiply(theta.multiply(twoTheta.subtract(3)).add(1));
        final T[] interpolatedState;
        final T[] interpolatedDerivatives;
        if (getGlobalPreviousState() != null && theta.getReal() <= 0.5) {
            final T f1        = thetaH;
            final T f2        = f1.multiply(eta);
            final T f3        = f2.multiply(theta);
            final T f4        = f3.multiply(eta);
            final T coeff0    = f1.multiply(a70).
                                subtract(f2.multiply(a70.subtract(1))).
                                add(f3.multiply(a70.multiply(2).subtract(1))).
                                add(f4.multiply(d0));
            final T coeff1    = time.getField().getZero();
            final T coeff2    = f1.multiply(a72).
                                subtract(f2.multiply(a72)).
                                add(f3.multiply(a72.multiply(2))).
                                add(f4.multiply(d2));
            final T coeff3    = f1.multiply(a73).
                                subtract(f2.multiply(a73)).
                                add(f3.multiply(a73.multiply(2))).
                                add(f4.multiply(d3));
            final T coeff4    = f1.multiply(a74).
                                subtract(f2.multiply(a74)).
                                add(f3.multiply(a74.multiply(2))).
                                add(f4.multiply(d4));
            final T coeff5    = f1.multiply(a75).
                                subtract(f2.multiply(a75)).
                                add(f3.multiply(a75.multiply(2))).
                                add(f4.multiply(d5));
            final T coeff6    = f4.multiply(d6).subtract(f3);
            final T coeffDot0 = a70.
                                subtract(dot2.multiply(a70.subtract(1))).
                                add(dot3.multiply(a70.multiply(2).subtract(1))).
                                add(dot4.multiply(d0));
            final T coeffDot1 = time.getField().getZero();
            final T coeffDot2 = a72.
                                subtract(dot2.multiply(a72)).
                                add(dot3.multiply(a72.multiply(2))).
                                add(dot4.multiply(d2));
            final T coeffDot3 = a73.
                                subtract(dot2.multiply(a73)).
                                add(dot3.multiply(a73.multiply(2))).
                                add(dot4.multiply(d3));
            final T coeffDot4 = a74.
                                subtract(dot2.multiply(a74)).
                                add(dot3.multiply(a74.multiply(2))).
                                add(dot4.multiply(d4));
            final T coeffDot5 = a75.
                                subtract(dot2.multiply(a75)).
                                add(dot3.multiply(a75.multiply(2))).
                                add(dot4.multiply(d5));
            final T coeffDot6 = dot4.multiply(d6).subtract(dot3);
            interpolatedState       = previousStateLinearCombination(coeff0, coeff1, coeff2, coeff3,
                                                                     coeff4, coeff5, coeff6);
            interpolatedDerivatives = derivativeLinearCombination(coeffDot0, coeffDot1, coeffDot2, coeffDot3,
                                                                  coeffDot4, coeffDot5, coeffDot6);
        } else {
            final T f1        = oneMinusThetaH.negate();
            final T f2        = oneMinusThetaH.multiply(theta);
            final T f3        = f2.multiply(theta);
            final T f4        = f3.multiply(eta);
            final T coeff0    = f1.multiply(a70).
                                subtract(f2.multiply(a70.subtract(1))).
                                add(f3.multiply(a70.multiply(2).subtract(1))).
                                add(f4.multiply(d0));
            final T coeff1    = time.getField().getZero();
            final T coeff2    = f1.multiply(a72).
                                subtract(f2.multiply(a72)).
                                add(f3.multiply(a72.multiply(2))).
                                add(f4.multiply(d2));
            final T coeff3    = f1.multiply(a73).
                                subtract(f2.multiply(a73)).
                                add(f3.multiply(a73.multiply(2))).
                                add(f4.multiply(d3));
            final T coeff4    = f1.multiply(a74).
                                subtract(f2.multiply(a74)).
                                add(f3.multiply(a74.multiply(2))).
                                add(f4.multiply(d4));
            final T coeff5    = f1.multiply(a75).
                                subtract(f2.multiply(a75)).
                                add(f3.multiply(a75.multiply(2))).
                                add(f4.multiply(d5));
            final T coeff6    = f4.multiply(d6).subtract(f3);
            final T coeffDot0 = a70.
                                subtract(dot2.multiply(a70.subtract(1))).
                                add(dot3.multiply(a70.multiply(2).subtract(1))).
                                add(dot4.multiply(d0));
            final T coeffDot1 = time.getField().getZero();
            final T coeffDot2 = a72.
                                subtract(dot2.multiply(a72)).
                                add(dot3.multiply(a72.multiply(2))).
                                add(dot4.multiply(d2));
            final T coeffDot3 = a73.
                                subtract(dot2.multiply(a73)).
                                add(dot3.multiply(a73.multiply(2))).
                                add(dot4.multiply(d3));
            final T coeffDot4 = a74.
                                subtract(dot2.multiply(a74)).
                                add(dot3.multiply(a74.multiply(2))).
                                add(dot4.multiply(d4));
            final T coeffDot5 = a75.
                                subtract(dot2.multiply(a75)).
                                add(dot3.multiply(a75.multiply(2))).
                                add(dot4.multiply(d5));
            final T coeffDot6 = dot4.multiply(d6).subtract(dot3);
            interpolatedState       = currentStateLinearCombination(coeff0, coeff1, coeff2, coeff3,
                                                                    coeff4, coeff5, coeff6);
            interpolatedDerivatives = derivativeLinearCombination(coeffDot0, coeffDot1, coeffDot2, coeffDot3,
                                                                  coeffDot4, coeffDot5, coeffDot6);
        }
        return new FieldODEStateAndDerivative(time, interpolatedState, interpolatedDerivatives);

    }

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy