All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.random.RandomDataGenerator Maven / Gradle / Ivy

There is a newer version: 2.12.15
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.random;

import java.io.Serializable;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.SecureRandom;
import java.util.Collection;

import org.apache.commons.math3.distribution.BetaDistribution;
import org.apache.commons.math3.distribution.BinomialDistribution;
import org.apache.commons.math3.distribution.CauchyDistribution;
import org.apache.commons.math3.distribution.ChiSquaredDistribution;
import org.apache.commons.math3.distribution.ExponentialDistribution;
import org.apache.commons.math3.distribution.FDistribution;
import org.apache.commons.math3.distribution.GammaDistribution;
import org.apache.commons.math3.distribution.HypergeometricDistribution;
import org.apache.commons.math3.distribution.PascalDistribution;
import org.apache.commons.math3.distribution.PoissonDistribution;
import org.apache.commons.math3.distribution.TDistribution;
import org.apache.commons.math3.distribution.WeibullDistribution;
import org.apache.commons.math3.distribution.ZipfDistribution;
import org.apache.commons.math3.distribution.UniformIntegerDistribution;
import org.apache.commons.math3.exception.MathInternalError;
import org.apache.commons.math3.exception.NotANumberException;
import org.apache.commons.math3.exception.NotFiniteNumberException;
import org.apache.commons.math3.exception.NotPositiveException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.MathArrays;

/**
 * Implements the {@link RandomData} interface using a {@link RandomGenerator}
 * instance to generate non-secure data and a {@link java.security.SecureRandom}
 * instance to provide data for the nextSecureXxx methods. If no
 * RandomGenerator is provided in the constructor, the default is
 * to use a {@link Well19937c} generator. To plug in a different
 * implementation, either implement RandomGenerator directly or
 * extend {@link AbstractRandomGenerator}.
 * 

* Supports reseeding the underlying pseudo-random number generator (PRNG). The * SecurityProvider and Algorithm used by the * SecureRandom instance can also be reset. *

*

* For details on the default PRNGs, see {@link java.util.Random} and * {@link java.security.SecureRandom}. *

*

* Usage Notes: *

    *
  • * Instance variables are used to maintain RandomGenerator and * SecureRandom instances used in data generation. Therefore, to * generate a random sequence of values or strings, you should use just * one RandomDataImpl instance repeatedly.
  • *
  • * The "secure" methods are *much* slower. These should be used only when a * cryptographically secure random sequence is required. A secure random * sequence is a sequence of pseudo-random values which, in addition to being * well-dispersed (so no subsequence of values is an any more likely than other * subsequence of the the same length), also has the additional property that * knowledge of values generated up to any point in the sequence does not make * it any easier to predict subsequent values.
  • *
  • * When a new RandomDataImpl is created, the underlying random * number generators are not initialized. If you do not * explicitly seed the default non-secure generator, it is seeded with the * current time in milliseconds plus the system identity hash code on first use. * The same holds for the secure generator. If you provide a RandomGenerator * to the constructor, however, this generator is not reseeded by the constructor * nor is it reseeded on first use.
  • *
  • * The reSeed and reSeedSecure methods delegate to the * corresponding methods on the underlying RandomGenerator and * SecureRandom instances. Therefore, reSeed(long) * fully resets the initial state of the non-secure random number generator (so * that reseeding with a specific value always results in the same subsequent * random sequence); whereas reSeedSecure(long) does not * reinitialize the secure random number generator (so secure sequences started * with calls to reseedSecure(long) won't be identical).
  • *
  • * This implementation is not synchronized. The underlying RandomGenerator * or SecureRandom instances are not protected by synchronization and * are not guaranteed to be thread-safe. Therefore, if an instance of this class * is concurrently utilized by multiple threads, it is the responsibility of * client code to synchronize access to seeding and data generation methods. *
  • *
*

* @since 3.1 */ public class RandomDataGenerator implements RandomData, Serializable { /** Serializable version identifier */ private static final long serialVersionUID = -626730818244969716L; /** underlying random number generator */ private RandomGenerator rand = null; /** underlying secure random number generator */ private RandomGenerator secRand = null; /** * Construct a RandomDataGenerator, using a default random generator as the source * of randomness. * *

The default generator is a {@link Well19937c} seeded * with {@code System.currentTimeMillis() + System.identityHashCode(this))}. * The generator is initialized and seeded on first use.

*/ public RandomDataGenerator() { } /** * Construct a RandomDataGenerator using the supplied {@link RandomGenerator} as * the source of (non-secure) random data. * * @param rand the source of (non-secure) random data * (may be null, resulting in the default generator) */ public RandomDataGenerator(RandomGenerator rand) { this.rand = rand; } /** * {@inheritDoc} *

* Algorithm Description: hex strings are generated using a * 2-step process. *

    *
  1. {@code len / 2 + 1} binary bytes are generated using the underlying * Random
  2. *
  3. Each binary byte is translated into 2 hex digits
  4. *
*

* * @param len the desired string length. * @return the random string. * @throws NotStrictlyPositiveException if {@code len <= 0}. */ public String nextHexString(int len) throws NotStrictlyPositiveException { if (len <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.LENGTH, len); } // Get a random number generator RandomGenerator ran = getRandomGenerator(); // Initialize output buffer StringBuilder outBuffer = new StringBuilder(); // Get int(len/2)+1 random bytes byte[] randomBytes = new byte[(len / 2) + 1]; ran.nextBytes(randomBytes); // Convert each byte to 2 hex digits for (int i = 0; i < randomBytes.length; i++) { Integer c = Integer.valueOf(randomBytes[i]); /* * Add 128 to byte value to make interval 0-255 before doing hex * conversion. This guarantees <= 2 hex digits from toHexString() * toHexString would otherwise add 2^32 to negative arguments. */ String hex = Integer.toHexString(c.intValue() + 128); // Make sure we add 2 hex digits for each byte if (hex.length() == 1) { hex = "0" + hex; } outBuffer.append(hex); } return outBuffer.toString().substring(0, len); } /** {@inheritDoc} */ public int nextInt(final int lower, final int upper) throws NumberIsTooLargeException { return new UniformIntegerDistribution(getRandomGenerator(), lower, upper).sample(); } /** {@inheritDoc} */ public long nextLong(final long lower, final long upper) throws NumberIsTooLargeException { if (lower >= upper) { throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND, lower, upper, false); } final long max = (upper - lower) + 1; if (max <= 0) { // the range is too wide to fit in a positive long (larger than 2^63); as it covers // more than half the long range, we use directly a simple rejection method final RandomGenerator rng = getRandomGenerator(); while (true) { final long r = rng.nextLong(); if (r >= lower && r <= upper) { return r; } } } else if (max < Integer.MAX_VALUE){ // we can shift the range and generate directly a positive int return lower + getRandomGenerator().nextInt((int) max); } else { // we can shift the range and generate directly a positive long return lower + nextLong(getRandomGenerator(), max); } } /** * Returns a pseudorandom, uniformly distributed {@code long} value * between 0 (inclusive) and the specified value (exclusive), drawn from * this random number generator's sequence. * * @param rng random generator to use * @param n the bound on the random number to be returned. Must be * positive. * @return a pseudorandom, uniformly distributed {@code long} * value between 0 (inclusive) and n (exclusive). * @throws IllegalArgumentException if n is not positive. */ private static long nextLong(final RandomGenerator rng, final long n) throws IllegalArgumentException { if (n > 0) { final byte[] byteArray = new byte[8]; long bits; long val; do { rng.nextBytes(byteArray); bits = 0; for (final byte b : byteArray) { bits = (bits << 8) | (((long) b) & 0xffL); } bits &= 0x7fffffffffffffffL; val = bits % n; } while (bits - val + (n - 1) < 0); return val; } throw new NotStrictlyPositiveException(n); } /** * {@inheritDoc} *

* Algorithm Description: hex strings are generated in * 40-byte segments using a 3-step process. *

    *
  1. * 20 random bytes are generated using the underlying * SecureRandom.
  2. *
  3. * SHA-1 hash is applied to yield a 20-byte binary digest.
  4. *
  5. * Each byte of the binary digest is converted to 2 hex digits.
  6. *
*

* @throws NotStrictlyPositiveException if {@code len <= 0} */ public String nextSecureHexString(int len) throws NotStrictlyPositiveException { if (len <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.LENGTH, len); } // Get SecureRandom and setup Digest provider final RandomGenerator secRan = getSecRan(); MessageDigest alg = null; try { alg = MessageDigest.getInstance("SHA-1"); } catch (NoSuchAlgorithmException ex) { // this should never happen throw new MathInternalError(ex); } alg.reset(); // Compute number of iterations required (40 bytes each) int numIter = (len / 40) + 1; StringBuilder outBuffer = new StringBuilder(); for (int iter = 1; iter < numIter + 1; iter++) { byte[] randomBytes = new byte[40]; secRan.nextBytes(randomBytes); alg.update(randomBytes); // Compute hash -- will create 20-byte binary hash byte[] hash = alg.digest(); // Loop over the hash, converting each byte to 2 hex digits for (int i = 0; i < hash.length; i++) { Integer c = Integer.valueOf(hash[i]); /* * Add 128 to byte value to make interval 0-255 This guarantees * <= 2 hex digits from toHexString() toHexString would * otherwise add 2^32 to negative arguments */ String hex = Integer.toHexString(c.intValue() + 128); // Keep strings uniform length -- guarantees 40 bytes if (hex.length() == 1) { hex = "0" + hex; } outBuffer.append(hex); } } return outBuffer.toString().substring(0, len); } /** {@inheritDoc} */ public int nextSecureInt(final int lower, final int upper) throws NumberIsTooLargeException { return new UniformIntegerDistribution(getSecRan(), lower, upper).sample(); } /** {@inheritDoc} */ public long nextSecureLong(final long lower, final long upper) throws NumberIsTooLargeException { if (lower >= upper) { throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND, lower, upper, false); } final RandomGenerator rng = getSecRan(); final long max = (upper - lower) + 1; if (max <= 0) { // the range is too wide to fit in a positive long (larger than 2^63); as it covers // more than half the long range, we use directly a simple rejection method while (true) { final long r = rng.nextLong(); if (r >= lower && r <= upper) { return r; } } } else if (max < Integer.MAX_VALUE){ // we can shift the range and generate directly a positive int return lower + rng.nextInt((int) max); } else { // we can shift the range and generate directly a positive long return lower + nextLong(rng, max); } } /** * {@inheritDoc} *

* Algorithm Description: *

  • For small means, uses simulation of a Poisson process * using Uniform deviates, as described * here. * The Poisson process (and hence value returned) is bounded by 1000 * mean.
  • * *
  • For large means, uses the rejection algorithm described in
    * Devroye, Luc. (1981).The Computer Generation of Poisson Random Variables * Computing vol. 26 pp. 197-207.

* @throws NotStrictlyPositiveException if {@code len <= 0} */ public long nextPoisson(double mean) throws NotStrictlyPositiveException { return new PoissonDistribution(getRandomGenerator(), mean, PoissonDistribution.DEFAULT_EPSILON, PoissonDistribution.DEFAULT_MAX_ITERATIONS).sample(); } /** {@inheritDoc} */ public double nextGaussian(double mu, double sigma) throws NotStrictlyPositiveException { if (sigma <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sigma); } return sigma * getRandomGenerator().nextGaussian() + mu; } /** * {@inheritDoc} * *

* Algorithm Description: Uses the Algorithm SA (Ahrens) * from p. 876 in: * [1]: Ahrens, J. H. and Dieter, U. (1972). Computer methods for * sampling from the exponential and normal distributions. * Communications of the ACM, 15, 873-882. *

*/ public double nextExponential(double mean) throws NotStrictlyPositiveException { return new ExponentialDistribution(getRandomGenerator(), mean, ExponentialDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY).sample(); } /** *

Generates a random value from the * {@link org.apache.commons.math3.distribution.GammaDistribution Gamma Distribution}.

* *

This implementation uses the following algorithms:

* *

For 0 < shape < 1:
* Ahrens, J. H. and Dieter, U., Computer methods for * sampling from gamma, beta, Poisson and binomial distributions. * Computing, 12, 223-246, 1974.

* *

For shape >= 1:
* Marsaglia and Tsang, A Simple Method for Generating * Gamma Variables. ACM Transactions on Mathematical Software, * Volume 26 Issue 3, September, 2000.

* * @param shape the median of the Gamma distribution * @param scale the scale parameter of the Gamma distribution * @return random value sampled from the Gamma(shape, scale) distribution * @throws NotStrictlyPositiveException if {@code shape <= 0} or * {@code scale <= 0}. */ public double nextGamma(double shape, double scale) throws NotStrictlyPositiveException { return new GammaDistribution(getRandomGenerator(),shape, scale, GammaDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY).sample(); } /** * Generates a random value from the {@link HypergeometricDistribution Hypergeometric Distribution}. * * @param populationSize the population size of the Hypergeometric distribution * @param numberOfSuccesses number of successes in the population of the Hypergeometric distribution * @param sampleSize the sample size of the Hypergeometric distribution * @return random value sampled from the Hypergeometric(numberOfSuccesses, sampleSize) distribution * @throws NumberIsTooLargeException if {@code numberOfSuccesses > populationSize}, * or {@code sampleSize > populationSize}. * @throws NotStrictlyPositiveException if {@code populationSize <= 0}. * @throws NotPositiveException if {@code numberOfSuccesses < 0}. */ public int nextHypergeometric(int populationSize, int numberOfSuccesses, int sampleSize) throws NotPositiveException, NotStrictlyPositiveException, NumberIsTooLargeException { return new HypergeometricDistribution(getRandomGenerator(),populationSize, numberOfSuccesses, sampleSize).sample(); } /** * Generates a random value from the {@link PascalDistribution Pascal Distribution}. * * @param r the number of successes of the Pascal distribution * @param p the probability of success of the Pascal distribution * @return random value sampled from the Pascal(r, p) distribution * @throws NotStrictlyPositiveException if the number of successes is not positive * @throws OutOfRangeException if the probability of success is not in the * range {@code [0, 1]}. */ public int nextPascal(int r, double p) throws NotStrictlyPositiveException, OutOfRangeException { return new PascalDistribution(getRandomGenerator(), r, p).sample(); } /** * Generates a random value from the {@link TDistribution T Distribution}. * * @param df the degrees of freedom of the T distribution * @return random value from the T(df) distribution * @throws NotStrictlyPositiveException if {@code df <= 0} */ public double nextT(double df) throws NotStrictlyPositiveException { return new TDistribution(getRandomGenerator(), df, TDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY).sample(); } /** * Generates a random value from the {@link WeibullDistribution Weibull Distribution}. * * @param shape the shape parameter of the Weibull distribution * @param scale the scale parameter of the Weibull distribution * @return random value sampled from the Weibull(shape, size) distribution * @throws NotStrictlyPositiveException if {@code shape <= 0} or * {@code scale <= 0}. */ public double nextWeibull(double shape, double scale) throws NotStrictlyPositiveException { return new WeibullDistribution(getRandomGenerator(), shape, scale, WeibullDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY).sample(); } /** * Generates a random value from the {@link ZipfDistribution Zipf Distribution}. * * @param numberOfElements the number of elements of the ZipfDistribution * @param exponent the exponent of the ZipfDistribution * @return random value sampled from the Zipf(numberOfElements, exponent) distribution * @exception NotStrictlyPositiveException if {@code numberOfElements <= 0} * or {@code exponent <= 0}. */ public int nextZipf(int numberOfElements, double exponent) throws NotStrictlyPositiveException { return new ZipfDistribution(getRandomGenerator(), numberOfElements, exponent).sample(); } /** * Generates a random value from the {@link BetaDistribution Beta Distribution}. * * @param alpha first distribution shape parameter * @param beta second distribution shape parameter * @return random value sampled from the beta(alpha, beta) distribution */ public double nextBeta(double alpha, double beta) { return new BetaDistribution(getRandomGenerator(), alpha, beta, BetaDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY).sample(); } /** * Generates a random value from the {@link BinomialDistribution Binomial Distribution}. * * @param numberOfTrials number of trials of the Binomial distribution * @param probabilityOfSuccess probability of success of the Binomial distribution * @return random value sampled from the Binomial(numberOfTrials, probabilityOfSuccess) distribution */ public int nextBinomial(int numberOfTrials, double probabilityOfSuccess) { return new BinomialDistribution(getRandomGenerator(), numberOfTrials, probabilityOfSuccess).sample(); } /** * Generates a random value from the {@link CauchyDistribution Cauchy Distribution}. * * @param median the median of the Cauchy distribution * @param scale the scale parameter of the Cauchy distribution * @return random value sampled from the Cauchy(median, scale) distribution */ public double nextCauchy(double median, double scale) { return new CauchyDistribution(getRandomGenerator(), median, scale, CauchyDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY).sample(); } /** * Generates a random value from the {@link ChiSquaredDistribution ChiSquare Distribution}. * * @param df the degrees of freedom of the ChiSquare distribution * @return random value sampled from the ChiSquare(df) distribution */ public double nextChiSquare(double df) { return new ChiSquaredDistribution(getRandomGenerator(), df, ChiSquaredDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY).sample(); } /** * Generates a random value from the {@link FDistribution F Distribution}. * * @param numeratorDf the numerator degrees of freedom of the F distribution * @param denominatorDf the denominator degrees of freedom of the F distribution * @return random value sampled from the F(numeratorDf, denominatorDf) distribution * @throws NotStrictlyPositiveException if * {@code numeratorDf <= 0} or {@code denominatorDf <= 0}. */ public double nextF(double numeratorDf, double denominatorDf) throws NotStrictlyPositiveException { return new FDistribution(getRandomGenerator(), numeratorDf, denominatorDf, FDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY).sample(); } /** * {@inheritDoc} * *

* Algorithm Description: scales the output of * Random.nextDouble(), but rejects 0 values (i.e., will generate another * random double if Random.nextDouble() returns 0). This is necessary to * provide a symmetric output interval (both endpoints excluded). *

* @throws NumberIsTooLargeException if {@code lower >= upper} * @throws NotFiniteNumberException if one of the bounds is infinite * @throws NotANumberException if one of the bounds is NaN */ public double nextUniform(double lower, double upper) throws NumberIsTooLargeException, NotFiniteNumberException, NotANumberException { return nextUniform(lower, upper, false); } /** * {@inheritDoc} * *

* Algorithm Description: if the lower bound is excluded, * scales the output of Random.nextDouble(), but rejects 0 values (i.e., * will generate another random double if Random.nextDouble() returns 0). * This is necessary to provide a symmetric output interval (both * endpoints excluded). *

* * @throws NumberIsTooLargeException if {@code lower >= upper} * @throws NotFiniteNumberException if one of the bounds is infinite * @throws NotANumberException if one of the bounds is NaN */ public double nextUniform(double lower, double upper, boolean lowerInclusive) throws NumberIsTooLargeException, NotFiniteNumberException, NotANumberException { if (lower >= upper) { throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND, lower, upper, false); } if (Double.isInfinite(lower)) { throw new NotFiniteNumberException(LocalizedFormats.INFINITE_BOUND, lower); } if (Double.isInfinite(upper)) { throw new NotFiniteNumberException(LocalizedFormats.INFINITE_BOUND, upper); } if (Double.isNaN(lower) || Double.isNaN(upper)) { throw new NotANumberException(); } final RandomGenerator generator = getRandomGenerator(); // ensure nextDouble() isn't 0.0 double u = generator.nextDouble(); while (!lowerInclusive && u <= 0.0) { u = generator.nextDouble(); } return u * upper + (1.0 - u) * lower; } /** * {@inheritDoc} * * This method calls {@link MathArrays#shuffle(int[],RandomGenerator) * MathArrays.shuffle} in order to create a random shuffle of the set * of natural numbers {@code { 0, 1, ..., n - 1 }}. * * @throws NumberIsTooLargeException if {@code k > n}. * @throws NotStrictlyPositiveException if {@code k <= 0}. */ public int[] nextPermutation(int n, int k) throws NumberIsTooLargeException, NotStrictlyPositiveException { if (k > n) { throw new NumberIsTooLargeException(LocalizedFormats.PERMUTATION_EXCEEDS_N, k, n, true); } if (k <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.PERMUTATION_SIZE, k); } int[] index = MathArrays.natural(n); MathArrays.shuffle(index, getRandomGenerator()); // Return a new array containing the first "k" entries of "index". return MathArrays.copyOf(index, k); } /** * {@inheritDoc} * * This method calls {@link #nextPermutation(int,int) nextPermutation(c.size(), k)} * in order to sample the collection. */ public Object[] nextSample(Collection c, int k) throws NumberIsTooLargeException, NotStrictlyPositiveException { int len = c.size(); if (k > len) { throw new NumberIsTooLargeException(LocalizedFormats.SAMPLE_SIZE_EXCEEDS_COLLECTION_SIZE, k, len, true); } if (k <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.NUMBER_OF_SAMPLES, k); } Object[] objects = c.toArray(); int[] index = nextPermutation(len, k); Object[] result = new Object[k]; for (int i = 0; i < k; i++) { result[i] = objects[index[i]]; } return result; } /** * Reseeds the random number generator with the supplied seed. *

* Will create and initialize if null. *

* * @param seed the seed value to use */ public void reSeed(long seed) { getRandomGenerator().setSeed(seed); } /** * Reseeds the secure random number generator with the current time in * milliseconds. *

* Will create and initialize if null. *

*/ public void reSeedSecure() { getSecRan().setSeed(System.currentTimeMillis()); } /** * Reseeds the secure random number generator with the supplied seed. *

* Will create and initialize if null. *

* * @param seed the seed value to use */ public void reSeedSecure(long seed) { getSecRan().setSeed(seed); } /** * Reseeds the random number generator with * {@code System.currentTimeMillis() + System.identityHashCode(this))}. */ public void reSeed() { getRandomGenerator().setSeed(System.currentTimeMillis() + System.identityHashCode(this)); } /** * Sets the PRNG algorithm for the underlying SecureRandom instance using * the Security Provider API. The Security Provider API is defined in * Java Cryptography Architecture API Specification & Reference. *

* USAGE NOTE: This method carries significant * overhead and may take several seconds to execute. *

* * @param algorithm the name of the PRNG algorithm * @param provider the name of the provider * @throws NoSuchAlgorithmException if the specified algorithm is not available * @throws NoSuchProviderException if the specified provider is not installed */ public void setSecureAlgorithm(String algorithm, String provider) throws NoSuchAlgorithmException, NoSuchProviderException { secRand = RandomGeneratorFactory.createRandomGenerator(SecureRandom.getInstance(algorithm, provider)); } /** * Returns the RandomGenerator used to generate non-secure random data. *

* Creates and initializes a default generator if null. Uses a {@link Well19937c} * generator with {@code System.currentTimeMillis() + System.identityHashCode(this))} * as the default seed. *

* * @return the Random used to generate random data * @since 3.2 */ public RandomGenerator getRandomGenerator() { if (rand == null) { initRan(); } return rand; } /** * Sets the default generator to a {@link Well19937c} generator seeded with * {@code System.currentTimeMillis() + System.identityHashCode(this))}. */ private void initRan() { rand = new Well19937c(System.currentTimeMillis() + System.identityHashCode(this)); } /** * Returns the SecureRandom used to generate secure random data. *

* Creates and initializes if null. Uses * {@code System.currentTimeMillis() + System.identityHashCode(this)} as the default seed. *

* * @return the SecureRandom used to generate secure random data, wrapped in a * {@link RandomGenerator}. */ private RandomGenerator getSecRan() { if (secRand == null) { secRand = RandomGeneratorFactory.createRandomGenerator(new SecureRandom()); secRand.setSeed(System.currentTimeMillis() + System.identityHashCode(this)); } return secRand; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy