All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.analysis.integration.MidPointIntegrator Maven / Gradle / Ivy

There is a newer version: 2.12.15
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.analysis.integration;

import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.TooManyEvaluationsException;
import org.apache.commons.math3.util.FastMath;

/**
 * Implements the 
 * Midpoint Rule for integration of real univariate functions. For
 * reference, see Numerical Mathematics, ISBN 0387989595,
 * chapter 9.2.
 * 

* The function should be integrable.

* * @since 3.3 */ public class MidPointIntegrator extends BaseAbstractUnivariateIntegrator { /** Maximum number of iterations for midpoint. */ public static final int MIDPOINT_MAX_ITERATIONS_COUNT = 64; /** * Build a midpoint integrator with given accuracies and iterations counts. * @param relativeAccuracy relative accuracy of the result * @param absoluteAccuracy absolute accuracy of the result * @param minimalIterationCount minimum number of iterations * @param maximalIterationCount maximum number of iterations * (must be less than or equal to {@link #MIDPOINT_MAX_ITERATIONS_COUNT} * @exception NotStrictlyPositiveException if minimal number of iterations * is not strictly positive * @exception NumberIsTooSmallException if maximal number of iterations * is lesser than or equal to the minimal number of iterations * @exception NumberIsTooLargeException if maximal number of iterations * is greater than {@link #MIDPOINT_MAX_ITERATIONS_COUNT} */ public MidPointIntegrator(final double relativeAccuracy, final double absoluteAccuracy, final int minimalIterationCount, final int maximalIterationCount) throws NotStrictlyPositiveException, NumberIsTooSmallException, NumberIsTooLargeException { super(relativeAccuracy, absoluteAccuracy, minimalIterationCount, maximalIterationCount); if (maximalIterationCount > MIDPOINT_MAX_ITERATIONS_COUNT) { throw new NumberIsTooLargeException(maximalIterationCount, MIDPOINT_MAX_ITERATIONS_COUNT, false); } } /** * Build a midpoint integrator with given iteration counts. * @param minimalIterationCount minimum number of iterations * @param maximalIterationCount maximum number of iterations * (must be less than or equal to {@link #MIDPOINT_MAX_ITERATIONS_COUNT} * @exception NotStrictlyPositiveException if minimal number of iterations * is not strictly positive * @exception NumberIsTooSmallException if maximal number of iterations * is lesser than or equal to the minimal number of iterations * @exception NumberIsTooLargeException if maximal number of iterations * is greater than {@link #MIDPOINT_MAX_ITERATIONS_COUNT} */ public MidPointIntegrator(final int minimalIterationCount, final int maximalIterationCount) throws NotStrictlyPositiveException, NumberIsTooSmallException, NumberIsTooLargeException { super(minimalIterationCount, maximalIterationCount); if (maximalIterationCount > MIDPOINT_MAX_ITERATIONS_COUNT) { throw new NumberIsTooLargeException(maximalIterationCount, MIDPOINT_MAX_ITERATIONS_COUNT, false); } } /** * Construct a midpoint integrator with default settings. * (max iteration count set to {@link #MIDPOINT_MAX_ITERATIONS_COUNT}) */ public MidPointIntegrator() { super(DEFAULT_MIN_ITERATIONS_COUNT, MIDPOINT_MAX_ITERATIONS_COUNT); } /** * Compute the n-th stage integral of midpoint rule. * This function should only be called by API integrate() in the package. * To save time it does not verify arguments - caller does. *

* The interval is divided equally into 2^n sections rather than an * arbitrary m sections because this configuration can best utilize the * already computed values.

* * @param n the stage of 1/2 refinement. Must be larger than 0. * @param previousStageResult Result from the previous call to the * {@code stage} method. * @param min Lower bound of the integration interval. * @param diffMaxMin Difference between the lower bound and upper bound * of the integration interval. * @return the value of n-th stage integral * @throws TooManyEvaluationsException if the maximal number of evaluations * is exceeded. */ private double stage(final int n, double previousStageResult, double min, double diffMaxMin) throws TooManyEvaluationsException { // number of new points in this stage final long np = 1L << (n - 1); double sum = 0; // spacing between adjacent new points final double spacing = diffMaxMin / np; // the first new point double x = min + 0.5 * spacing; for (long i = 0; i < np; i++) { sum += computeObjectiveValue(x); x += spacing; } // add the new sum to previously calculated result return 0.5 * (previousStageResult + sum * spacing); } /** {@inheritDoc} */ @Override protected double doIntegrate() throws MathIllegalArgumentException, TooManyEvaluationsException, MaxCountExceededException { final double min = getMin(); final double diff = getMax() - min; final double midPoint = min + 0.5 * diff; double oldt = diff * computeObjectiveValue(midPoint); while (true) { incrementCount(); final int i = getIterations(); final double t = stage(i, oldt, min, diff); if (i >= getMinimalIterationCount()) { final double delta = FastMath.abs(t - oldt); final double rLimit = getRelativeAccuracy() * (FastMath.abs(oldt) + FastMath.abs(t)) * 0.5; if ((delta <= rLimit) || (delta <= getAbsoluteAccuracy())) { return t; } } oldt = t; } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy