All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.linear.RealVector Maven / Gradle / Ivy

There is a newer version: 2.12.15
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.linear;

import java.util.Iterator;
import java.util.NoSuchElementException;

import org.apache.commons.math3.exception.MathUnsupportedOperationException;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.NotPositiveException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.MathArithmeticException;
import org.apache.commons.math3.analysis.FunctionUtils;
import org.apache.commons.math3.analysis.function.Add;
import org.apache.commons.math3.analysis.function.Multiply;
import org.apache.commons.math3.analysis.function.Divide;
import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.FastMath;

/**
 * Class defining a real-valued vector with basic algebraic operations.
 * 

* vector element indexing is 0-based -- e.g., {@code getEntry(0)} * returns the first element of the vector. *

*

* The {@code code map} and {@code mapToSelf} methods operate * on vectors element-wise, i.e. they perform the same operation (adding a scalar, * applying a function ...) on each element in turn. The {@code map} * versions create a new vector to hold the result and do not change the instance. * The {@code mapToSelf} version uses the instance itself to store the * results, so the instance is changed by this method. In all cases, the result * vector is returned by the methods, allowing the fluent API * style, like this: *

*
 *   RealVector result = v.mapAddToSelf(3.4).mapToSelf(new Tan()).mapToSelf(new Power(2.3));
 * 
* * @since 2.1 */ public abstract class RealVector { /** * Returns the size of the vector. * * @return the size of this vector. */ public abstract int getDimension(); /** * Return the entry at the specified index. * * @param index Index location of entry to be fetched. * @return the vector entry at {@code index}. * @throws OutOfRangeException if the index is not valid. * @see #setEntry(int, double) */ public abstract double getEntry(int index) throws OutOfRangeException; /** * Set a single element. * * @param index element index. * @param value new value for the element. * @throws OutOfRangeException if the index is not valid. * @see #getEntry(int) */ public abstract void setEntry(int index, double value) throws OutOfRangeException; /** * Change an entry at the specified index. * * @param index Index location of entry to be set. * @param increment Value to add to the vector entry. * @throws OutOfRangeException if the index is not valid. * @since 3.0 */ public void addToEntry(int index, double increment) throws OutOfRangeException { setEntry(index, getEntry(index) + increment); } /** * Construct a new vector by appending a vector to this vector. * * @param v vector to append to this one. * @return a new vector. */ public abstract RealVector append(RealVector v); /** * Construct a new vector by appending a double to this vector. * * @param d double to append. * @return a new vector. */ public abstract RealVector append(double d); /** * Get a subvector from consecutive elements. * * @param index index of first element. * @param n number of elements to be retrieved. * @return a vector containing n elements. * @throws OutOfRangeException if the index is not valid. * @throws NotPositiveException if the number of elements is not positive. */ public abstract RealVector getSubVector(int index, int n) throws NotPositiveException, OutOfRangeException; /** * Set a sequence of consecutive elements. * * @param index index of first element to be set. * @param v vector containing the values to set. * @throws OutOfRangeException if the index is not valid. */ public abstract void setSubVector(int index, RealVector v) throws OutOfRangeException; /** * Check whether any coordinate of this vector is {@code NaN}. * * @return {@code true} if any coordinate of this vector is {@code NaN}, * {@code false} otherwise. */ public abstract boolean isNaN(); /** * Check whether any coordinate of this vector is infinite and none are {@code NaN}. * * @return {@code true} if any coordinate of this vector is infinite and * none are {@code NaN}, {@code false} otherwise. */ public abstract boolean isInfinite(); /** * Check if instance and specified vectors have the same dimension. * * @param v Vector to compare instance with. * @throws DimensionMismatchException if the vectors do not * have the same dimension. */ protected void checkVectorDimensions(RealVector v) throws DimensionMismatchException { checkVectorDimensions(v.getDimension()); } /** * Check if instance dimension is equal to some expected value. * * @param n Expected dimension. * @throws DimensionMismatchException if the dimension is * inconsistent with the vector size. */ protected void checkVectorDimensions(int n) throws DimensionMismatchException { int d = getDimension(); if (d != n) { throw new DimensionMismatchException(d, n); } } /** * Check if an index is valid. * * @param index Index to check. * @exception OutOfRangeException if {@code index} is not valid. */ protected void checkIndex(final int index) throws OutOfRangeException { if (index < 0 || index >= getDimension()) { throw new OutOfRangeException(LocalizedFormats.INDEX, index, 0, getDimension() - 1); } } /** * Checks that the indices of a subvector are valid. * * @param start the index of the first entry of the subvector * @param end the index of the last entry of the subvector (inclusive) * @throws OutOfRangeException if {@code start} of {@code end} are not valid * @throws NumberIsTooSmallException if {@code end < start} * @since 3.1 */ protected void checkIndices(final int start, final int end) throws NumberIsTooSmallException, OutOfRangeException { final int dim = getDimension(); if ((start < 0) || (start >= dim)) { throw new OutOfRangeException(LocalizedFormats.INDEX, start, 0, dim - 1); } if ((end < 0) || (end >= dim)) { throw new OutOfRangeException(LocalizedFormats.INDEX, end, 0, dim - 1); } if (end < start) { // TODO Use more specific error message throw new NumberIsTooSmallException(LocalizedFormats.INITIAL_ROW_AFTER_FINAL_ROW, end, start, false); } } /** * Compute the sum of this vector and {@code v}. * Returns a new vector. Does not change instance data. * * @param v Vector to be added. * @return {@code this} + {@code v}. * @throws DimensionMismatchException if {@code v} is not the same size as * {@code this} vector. */ public RealVector add(RealVector v) throws DimensionMismatchException { checkVectorDimensions(v); RealVector result = v.copy(); Iterator it = iterator(); while (it.hasNext()) { final Entry e = it.next(); final int index = e.getIndex(); result.setEntry(index, e.getValue() + result.getEntry(index)); } return result; } /** * Subtract {@code v} from this vector. * Returns a new vector. Does not change instance data. * * @param v Vector to be subtracted. * @return {@code this} - {@code v}. * @throws DimensionMismatchException if {@code v} is not the same size as * {@code this} vector. */ public RealVector subtract(RealVector v) throws DimensionMismatchException { checkVectorDimensions(v); RealVector result = v.mapMultiply(-1d); Iterator it = iterator(); while (it.hasNext()) { final Entry e = it.next(); final int index = e.getIndex(); result.setEntry(index, e.getValue() + result.getEntry(index)); } return result; } /** * Add a value to each entry. * Returns a new vector. Does not change instance data. * * @param d Value to be added to each entry. * @return {@code this} + {@code d}. */ public RealVector mapAdd(double d) { return copy().mapAddToSelf(d); } /** * Add a value to each entry. * The instance is changed in-place. * * @param d Value to be added to each entry. * @return {@code this}. */ public RealVector mapAddToSelf(double d) { if (d != 0) { return mapToSelf(FunctionUtils.fix2ndArgument(new Add(), d)); } return this; } /** * Returns a (deep) copy of this vector. * * @return a vector copy. */ public abstract RealVector copy(); /** * Compute the dot product of this vector with {@code v}. * * @param v Vector with which dot product should be computed * @return the scalar dot product between this instance and {@code v}. * @throws DimensionMismatchException if {@code v} is not the same size as * {@code this} vector. */ public double dotProduct(RealVector v) throws DimensionMismatchException { checkVectorDimensions(v); double d = 0; final int n = getDimension(); for (int i = 0; i < n; i++) { d += getEntry(i) * v.getEntry(i); } return d; } /** * Computes the cosine of the angle between this vector and the * argument. * * @param v Vector. * @return the cosine of the angle between this vector and {@code v}. * @throws MathArithmeticException if {@code this} or {@code v} is the null * vector * @throws DimensionMismatchException if the dimensions of {@code this} and * {@code v} do not match */ public double cosine(RealVector v) throws DimensionMismatchException, MathArithmeticException { final double norm = getNorm(); final double vNorm = v.getNorm(); if (norm == 0 || vNorm == 0) { throw new MathArithmeticException(LocalizedFormats.ZERO_NORM); } return dotProduct(v) / (norm * vNorm); } /** * Element-by-element division. * * @param v Vector by which instance elements must be divided. * @return a vector containing this[i] / v[i] for all i. * @throws DimensionMismatchException if {@code v} is not the same size as * {@code this} vector. */ public abstract RealVector ebeDivide(RealVector v) throws DimensionMismatchException; /** * Element-by-element multiplication. * * @param v Vector by which instance elements must be multiplied * @return a vector containing this[i] * v[i] for all i. * @throws DimensionMismatchException if {@code v} is not the same size as * {@code this} vector. */ public abstract RealVector ebeMultiply(RealVector v) throws DimensionMismatchException; /** * Distance between two vectors. *

This method computes the distance consistent with the * L2 norm, i.e. the square root of the sum of * element differences, or Euclidean distance.

* * @param v Vector to which distance is requested. * @return the distance between two vectors. * @throws DimensionMismatchException if {@code v} is not the same size as * {@code this} vector. * @see #getL1Distance(RealVector) * @see #getLInfDistance(RealVector) * @see #getNorm() */ public double getDistance(RealVector v) throws DimensionMismatchException { checkVectorDimensions(v); double d = 0; Iterator it = iterator(); while (it.hasNext()) { final Entry e = it.next(); final double diff = e.getValue() - v.getEntry(e.getIndex()); d += diff * diff; } return FastMath.sqrt(d); } /** * Returns the L2 norm of the vector. *

The L2 norm is the root of the sum of * the squared elements.

* * @return the norm. * @see #getL1Norm() * @see #getLInfNorm() * @see #getDistance(RealVector) */ public double getNorm() { double sum = 0; Iterator it = iterator(); while (it.hasNext()) { final Entry e = it.next(); final double value = e.getValue(); sum += value * value; } return FastMath.sqrt(sum); } /** * Returns the L1 norm of the vector. *

The L1 norm is the sum of the absolute * values of the elements.

* * @return the norm. * @see #getNorm() * @see #getLInfNorm() * @see #getL1Distance(RealVector) */ public double getL1Norm() { double norm = 0; Iterator it = iterator(); while (it.hasNext()) { final Entry e = it.next(); norm += FastMath.abs(e.getValue()); } return norm; } /** * Returns the L norm of the vector. *

The L norm is the max of the absolute * values of the elements.

* * @return the norm. * @see #getNorm() * @see #getL1Norm() * @see #getLInfDistance(RealVector) */ public double getLInfNorm() { double norm = 0; Iterator it = iterator(); while (it.hasNext()) { final Entry e = it.next(); norm = FastMath.max(norm, FastMath.abs(e.getValue())); } return norm; } /** * Distance between two vectors. *

This method computes the distance consistent with * L1 norm, i.e. the sum of the absolute values of * the elements differences.

* * @param v Vector to which distance is requested. * @return the distance between two vectors. * @throws DimensionMismatchException if {@code v} is not the same size as * {@code this} vector. */ public double getL1Distance(RealVector v) throws DimensionMismatchException { checkVectorDimensions(v); double d = 0; Iterator it = iterator(); while (it.hasNext()) { final Entry e = it.next(); d += FastMath.abs(e.getValue() - v.getEntry(e.getIndex())); } return d; } /** * Distance between two vectors. *

This method computes the distance consistent with * L norm, i.e. the max of the absolute values of * element differences.

* * @param v Vector to which distance is requested. * @return the distance between two vectors. * @throws DimensionMismatchException if {@code v} is not the same size as * {@code this} vector. * @see #getDistance(RealVector) * @see #getL1Distance(RealVector) * @see #getLInfNorm() */ public double getLInfDistance(RealVector v) throws DimensionMismatchException { checkVectorDimensions(v); double d = 0; Iterator it = iterator(); while (it.hasNext()) { final Entry e = it.next(); d = FastMath.max(FastMath.abs(e.getValue() - v.getEntry(e.getIndex())), d); } return d; } /** * Get the index of the minimum entry. * * @return the index of the minimum entry or -1 if vector length is 0 * or all entries are {@code NaN}. */ public int getMinIndex() { int minIndex = -1; double minValue = Double.POSITIVE_INFINITY; Iterator iterator = iterator(); while (iterator.hasNext()) { final Entry entry = iterator.next(); if (entry.getValue() <= minValue) { minIndex = entry.getIndex(); minValue = entry.getValue(); } } return minIndex; } /** * Get the value of the minimum entry. * * @return the value of the minimum entry or {@code NaN} if all * entries are {@code NaN}. */ public double getMinValue() { final int minIndex = getMinIndex(); return minIndex < 0 ? Double.NaN : getEntry(minIndex); } /** * Get the index of the maximum entry. * * @return the index of the maximum entry or -1 if vector length is 0 * or all entries are {@code NaN} */ public int getMaxIndex() { int maxIndex = -1; double maxValue = Double.NEGATIVE_INFINITY; Iterator iterator = iterator(); while (iterator.hasNext()) { final Entry entry = iterator.next(); if (entry.getValue() >= maxValue) { maxIndex = entry.getIndex(); maxValue = entry.getValue(); } } return maxIndex; } /** * Get the value of the maximum entry. * * @return the value of the maximum entry or {@code NaN} if all * entries are {@code NaN}. */ public double getMaxValue() { final int maxIndex = getMaxIndex(); return maxIndex < 0 ? Double.NaN : getEntry(maxIndex); } /** * Multiply each entry by the argument. Returns a new vector. * Does not change instance data. * * @param d Multiplication factor. * @return {@code this} * {@code d}. */ public RealVector mapMultiply(double d) { return copy().mapMultiplyToSelf(d); } /** * Multiply each entry. * The instance is changed in-place. * * @param d Multiplication factor. * @return {@code this}. */ public RealVector mapMultiplyToSelf(double d){ return mapToSelf(FunctionUtils.fix2ndArgument(new Multiply(), d)); } /** * Subtract a value from each entry. Returns a new vector. * Does not change instance data. * * @param d Value to be subtracted. * @return {@code this} - {@code d}. */ public RealVector mapSubtract(double d) { return copy().mapSubtractToSelf(d); } /** * Subtract a value from each entry. * The instance is changed in-place. * * @param d Value to be subtracted. * @return {@code this}. */ public RealVector mapSubtractToSelf(double d){ return mapAddToSelf(-d); } /** * Divide each entry by the argument. Returns a new vector. * Does not change instance data. * * @param d Value to divide by. * @return {@code this} / {@code d}. */ public RealVector mapDivide(double d) { return copy().mapDivideToSelf(d); } /** * Divide each entry by the argument. * The instance is changed in-place. * * @param d Value to divide by. * @return {@code this}. */ public RealVector mapDivideToSelf(double d){ return mapToSelf(FunctionUtils.fix2ndArgument(new Divide(), d)); } /** * Compute the outer product. * * @param v Vector with which outer product should be computed. * @return the matrix outer product between this instance and {@code v}. */ public RealMatrix outerProduct(RealVector v) { final int m = this.getDimension(); final int n = v.getDimension(); final RealMatrix product; if (v instanceof SparseRealVector || this instanceof SparseRealVector) { product = new OpenMapRealMatrix(m, n); } else { product = new Array2DRowRealMatrix(m, n); } for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { product.setEntry(i, j, this.getEntry(i) * v.getEntry(j)); } } return product; } /** * Find the orthogonal projection of this vector onto another vector. * * @param v vector onto which instance must be projected. * @return projection of the instance onto {@code v}. * @throws DimensionMismatchException if {@code v} is not the same size as * {@code this} vector. * @throws MathArithmeticException if {@code this} or {@code v} is the null * vector */ public RealVector projection(final RealVector v) throws DimensionMismatchException, MathArithmeticException { final double norm2 = v.dotProduct(v); if (norm2 == 0.0) { throw new MathArithmeticException(LocalizedFormats.ZERO_NORM); } return v.mapMultiply(dotProduct(v) / v.dotProduct(v)); } /** * Set all elements to a single value. * * @param value Single value to set for all elements. */ public void set(double value) { Iterator it = iterator(); while (it.hasNext()) { final Entry e = it.next(); e.setValue(value); } } /** * Convert the vector to an array of {@code double}s. * The array is independent from this vector data: the elements * are copied. * * @return an array containing a copy of the vector elements. */ public double[] toArray() { int dim = getDimension(); double[] values = new double[dim]; for (int i = 0; i < dim; i++) { values[i] = getEntry(i); } return values; } /** * Creates a unit vector pointing in the direction of this vector. * The instance is not changed by this method. * * @return a unit vector pointing in direction of this vector. * @throws MathArithmeticException if the norm is zero. */ public RealVector unitVector() throws MathArithmeticException { final double norm = getNorm(); if (norm == 0) { throw new MathArithmeticException(LocalizedFormats.ZERO_NORM); } return mapDivide(norm); } /** * Converts this vector into a unit vector. * The instance itself is changed by this method. * * @throws MathArithmeticException if the norm is zero. */ public void unitize() throws MathArithmeticException { final double norm = getNorm(); if (norm == 0) { throw new MathArithmeticException(LocalizedFormats.ZERO_NORM); } mapDivideToSelf(getNorm()); } /** * Create a sparse iterator over the vector, which may omit some entries. * The ommitted entries are either exact zeroes (for dense implementations) * or are the entries which are not stored (for real sparse vectors). * No guarantees are made about order of iteration. * *

Note: derived classes are required to return an {@link Iterator} that * returns non-null {@link Entry} objects as long as {@link Iterator#hasNext()} * returns {@code true}.

* * @return a sparse iterator. */ public Iterator sparseIterator() { return new SparseEntryIterator(); } /** * Generic dense iterator. Iteration is in increasing order * of the vector index. * *

Note: derived classes are required to return an {@link Iterator} that * returns non-null {@link Entry} objects as long as {@link Iterator#hasNext()} * returns {@code true}.

* * @return a dense iterator. */ public Iterator iterator() { final int dim = getDimension(); return new Iterator() { /** Current index. */ private int i = 0; /** Current entry. */ private Entry e = new Entry(); /** {@inheritDoc} */ public boolean hasNext() { return i < dim; } /** {@inheritDoc} */ public Entry next() { if (i < dim) { e.setIndex(i++); return e; } else { throw new NoSuchElementException(); } } /** * {@inheritDoc} * * @throws MathUnsupportedOperationException in all circumstances. */ public void remove() throws MathUnsupportedOperationException { throw new MathUnsupportedOperationException(); } }; } /** * Acts as if implemented as: *
     *  return copy().mapToSelf(function);
     * 
* Returns a new vector. Does not change instance data. * * @param function Function to apply to each entry. * @return a new vector. */ public RealVector map(UnivariateFunction function) { return copy().mapToSelf(function); } /** * Acts as if it is implemented as: *
     *  Entry e = null;
     *  for(Iterator it = iterator(); it.hasNext(); e = it.next()) {
     *      e.setValue(function.value(e.getValue()));
     *  }
     * 
* Entries of this vector are modified in-place by this method. * * @param function Function to apply to each entry. * @return a reference to this vector. */ public RealVector mapToSelf(UnivariateFunction function) { Iterator it = iterator(); while (it.hasNext()) { final Entry e = it.next(); e.setValue(function.value(e.getValue())); } return this; } /** * Returns a new vector representing {@code a * this + b * y}, the linear * combination of {@code this} and {@code y}. * Returns a new vector. Does not change instance data. * * @param a Coefficient of {@code this}. * @param b Coefficient of {@code y}. * @param y Vector with which {@code this} is linearly combined. * @return a vector containing {@code a * this[i] + b * y[i]} for all * {@code i}. * @throws DimensionMismatchException if {@code y} is not the same size as * {@code this} vector. */ public RealVector combine(double a, double b, RealVector y) throws DimensionMismatchException { return copy().combineToSelf(a, b, y); } /** * Updates {@code this} with the linear combination of {@code this} and * {@code y}. * * @param a Weight of {@code this}. * @param b Weight of {@code y}. * @param y Vector with which {@code this} is linearly combined. * @return {@code this}, with components equal to * {@code a * this[i] + b * y[i]} for all {@code i}. * @throws DimensionMismatchException if {@code y} is not the same size as * {@code this} vector. */ public RealVector combineToSelf(double a, double b, RealVector y) throws DimensionMismatchException { checkVectorDimensions(y); for (int i = 0; i < getDimension(); i++) { final double xi = getEntry(i); final double yi = y.getEntry(i); setEntry(i, a * xi + b * yi); } return this; } /** * Visits (but does not alter) all entries of this vector in default order * (increasing index). * * @param visitor the visitor to be used to process the entries of this * vector * @return the value returned by {@link RealVectorPreservingVisitor#end()} * at the end of the walk * @since 3.1 */ public double walkInDefaultOrder(final RealVectorPreservingVisitor visitor) { final int dim = getDimension(); visitor.start(dim, 0, dim - 1); for (int i = 0; i < dim; i++) { visitor.visit(i, getEntry(i)); } return visitor.end(); } /** * Visits (but does not alter) some entries of this vector in default order * (increasing index). * * @param visitor visitor to be used to process the entries of this vector * @param start the index of the first entry to be visited * @param end the index of the last entry to be visited (inclusive) * @return the value returned by {@link RealVectorPreservingVisitor#end()} * at the end of the walk * @throws NumberIsTooSmallException if {@code end < start}. * @throws OutOfRangeException if the indices are not valid. * @since 3.1 */ public double walkInDefaultOrder(final RealVectorPreservingVisitor visitor, final int start, final int end) throws NumberIsTooSmallException, OutOfRangeException { checkIndices(start, end); visitor.start(getDimension(), start, end); for (int i = start; i <= end; i++) { visitor.visit(i, getEntry(i)); } return visitor.end(); } /** * Visits (but does not alter) all entries of this vector in optimized * order. The order in which the entries are visited is selected so as to * lead to the most efficient implementation; it might depend on the * concrete implementation of this abstract class. * * @param visitor the visitor to be used to process the entries of this * vector * @return the value returned by {@link RealVectorPreservingVisitor#end()} * at the end of the walk * @since 3.1 */ public double walkInOptimizedOrder(final RealVectorPreservingVisitor visitor) { return walkInDefaultOrder(visitor); } /** * Visits (but does not alter) some entries of this vector in optimized * order. The order in which the entries are visited is selected so as to * lead to the most efficient implementation; it might depend on the * concrete implementation of this abstract class. * * @param visitor visitor to be used to process the entries of this vector * @param start the index of the first entry to be visited * @param end the index of the last entry to be visited (inclusive) * @return the value returned by {@link RealVectorPreservingVisitor#end()} * at the end of the walk * @throws NumberIsTooSmallException if {@code end < start}. * @throws OutOfRangeException if the indices are not valid. * @since 3.1 */ public double walkInOptimizedOrder(final RealVectorPreservingVisitor visitor, final int start, final int end) throws NumberIsTooSmallException, OutOfRangeException { return walkInDefaultOrder(visitor, start, end); } /** * Visits (and possibly alters) all entries of this vector in default order * (increasing index). * * @param visitor the visitor to be used to process and modify the entries * of this vector * @return the value returned by {@link RealVectorChangingVisitor#end()} * at the end of the walk * @since 3.1 */ public double walkInDefaultOrder(final RealVectorChangingVisitor visitor) { final int dim = getDimension(); visitor.start(dim, 0, dim - 1); for (int i = 0; i < dim; i++) { setEntry(i, visitor.visit(i, getEntry(i))); } return visitor.end(); } /** * Visits (and possibly alters) some entries of this vector in default order * (increasing index). * * @param visitor visitor to be used to process the entries of this vector * @param start the index of the first entry to be visited * @param end the index of the last entry to be visited (inclusive) * @return the value returned by {@link RealVectorChangingVisitor#end()} * at the end of the walk * @throws NumberIsTooSmallException if {@code end < start}. * @throws OutOfRangeException if the indices are not valid. * @since 3.1 */ public double walkInDefaultOrder(final RealVectorChangingVisitor visitor, final int start, final int end) throws NumberIsTooSmallException, OutOfRangeException { checkIndices(start, end); visitor.start(getDimension(), start, end); for (int i = start; i <= end; i++) { setEntry(i, visitor.visit(i, getEntry(i))); } return visitor.end(); } /** * Visits (and possibly alters) all entries of this vector in optimized * order. The order in which the entries are visited is selected so as to * lead to the most efficient implementation; it might depend on the * concrete implementation of this abstract class. * * @param visitor the visitor to be used to process the entries of this * vector * @return the value returned by {@link RealVectorChangingVisitor#end()} * at the end of the walk * @since 3.1 */ public double walkInOptimizedOrder(final RealVectorChangingVisitor visitor) { return walkInDefaultOrder(visitor); } /** * Visits (and possibly change) some entries of this vector in optimized * order. The order in which the entries are visited is selected so as to * lead to the most efficient implementation; it might depend on the * concrete implementation of this abstract class. * * @param visitor visitor to be used to process the entries of this vector * @param start the index of the first entry to be visited * @param end the index of the last entry to be visited (inclusive) * @return the value returned by {@link RealVectorChangingVisitor#end()} * at the end of the walk * @throws NumberIsTooSmallException if {@code end < start}. * @throws OutOfRangeException if the indices are not valid. * @since 3.1 */ public double walkInOptimizedOrder(final RealVectorChangingVisitor visitor, final int start, final int end) throws NumberIsTooSmallException, OutOfRangeException { return walkInDefaultOrder(visitor, start, end); } /** An entry in the vector. */ protected class Entry { /** Index of this entry. */ private int index; /** Simple constructor. */ public Entry() { setIndex(0); } /** * Get the value of the entry. * * @return the value of the entry. */ public double getValue() { return getEntry(getIndex()); } /** * Set the value of the entry. * * @param value New value for the entry. */ public void setValue(double value) { setEntry(getIndex(), value); } /** * Get the index of the entry. * * @return the index of the entry. */ public int getIndex() { return index; } /** * Set the index of the entry. * * @param index New index for the entry. */ public void setIndex(int index) { this.index = index; } } /** *

* Test for the equality of two real vectors. If all coordinates of two real * vectors are exactly the same, and none are {@code NaN}, the two real * vectors are considered to be equal. {@code NaN} coordinates are * considered to affect globally the vector and be equals to each other - * i.e, if either (or all) coordinates of the real vector are equal to * {@code NaN}, the real vector is equal to a vector with all {@code NaN} * coordinates. *

*

* This method must be overriden by concrete subclasses of * {@link RealVector} (the current implementation throws an exception). *

* * @param other Object to test for equality. * @return {@code true} if two vector objects are equal, {@code false} if * {@code other} is null, not an instance of {@code RealVector}, or * not equal to this {@code RealVector} instance. * @throws MathUnsupportedOperationException if this method is not * overridden. */ @Override public boolean equals(Object other) throws MathUnsupportedOperationException { throw new MathUnsupportedOperationException(); } /** * {@inheritDoc}. This method must be overriden by concrete * subclasses of {@link RealVector} (current implementation throws an * exception). * * @throws MathUnsupportedOperationException if this method is not * overridden. */ @Override public int hashCode() throws MathUnsupportedOperationException { throw new MathUnsupportedOperationException(); } /** * This class should rarely be used, but is here to provide * a default implementation of sparseIterator(), which is implemented * by walking over the entries, skipping those that are zero. * * Concrete subclasses which are SparseVector implementations should * make their own sparse iterator, rather than using this one. * * This implementation might be useful for ArrayRealVector, when expensive * operations which preserve the default value are to be done on the entries, * and the fraction of non-default values is small (i.e. someone took a * SparseVector, and passed it into the copy-constructor of ArrayRealVector) */ protected class SparseEntryIterator implements Iterator { /** Dimension of the vector. */ private final int dim; /** Last entry returned by {@link #next()}. */ private Entry current; /** Next entry for {@link #next()} to return. */ private Entry next; /** Simple constructor. */ protected SparseEntryIterator() { dim = getDimension(); current = new Entry(); next = new Entry(); if (next.getValue() == 0) { advance(next); } } /** * Advance an entry up to the next nonzero one. * * @param e entry to advance. */ protected void advance(Entry e) { if (e == null) { return; } do { e.setIndex(e.getIndex() + 1); } while (e.getIndex() < dim && e.getValue() == 0); if (e.getIndex() >= dim) { e.setIndex(-1); } } /** {@inheritDoc} */ public boolean hasNext() { return next.getIndex() >= 0; } /** {@inheritDoc} */ public Entry next() { int index = next.getIndex(); if (index < 0) { throw new NoSuchElementException(); } current.setIndex(index); advance(next); return current; } /** * {@inheritDoc} * * @throws MathUnsupportedOperationException in all circumstances. */ public void remove() throws MathUnsupportedOperationException { throw new MathUnsupportedOperationException(); } } /** * Returns an unmodifiable view of the specified vector. * The returned vector has read-only access. An attempt to modify it will * result in a {@link MathUnsupportedOperationException}. However, the * returned vector is not immutable, since any modification of * {@code v} will also change the returned view. * For example, in the following piece of code *
     *     RealVector v = new ArrayRealVector(2);
     *     RealVector w = RealVector.unmodifiableRealVector(v);
     *     v.setEntry(0, 1.2);
     *     v.setEntry(1, -3.4);
     * 
* the changes will be seen in the {@code w} view of {@code v}. * * @param v Vector for which an unmodifiable view is to be returned. * @return an unmodifiable view of {@code v}. */ public static RealVector unmodifiableRealVector(final RealVector v) { /** * This anonymous class is an implementation of {@link RealVector} * with read-only access. * It wraps any {@link RealVector}, and exposes all methods which * do not modify it. Invoking methods which should normally result * in the modification of the calling {@link RealVector} results in * a {@link MathUnsupportedOperationException}. It should be noted * that {@link UnmodifiableVector} is not immutable. */ return new RealVector() { /** * {@inheritDoc} * * @throws MathUnsupportedOperationException in all circumstances. */ @Override public RealVector mapToSelf(UnivariateFunction function) throws MathUnsupportedOperationException { throw new MathUnsupportedOperationException(); } /** {@inheritDoc} */ @Override public RealVector map(UnivariateFunction function) { return v.map(function); } /** {@inheritDoc} */ @Override public Iterator iterator() { final Iterator i = v.iterator(); return new Iterator() { /** The current entry. */ private final UnmodifiableEntry e = new UnmodifiableEntry(); /** {@inheritDoc} */ public boolean hasNext() { return i.hasNext(); } /** {@inheritDoc} */ public Entry next() { e.setIndex(i.next().getIndex()); return e; } /** * {@inheritDoc} * * @throws MathUnsupportedOperationException in all * circumstances. */ public void remove() throws MathUnsupportedOperationException { throw new MathUnsupportedOperationException(); } }; } /** {@inheritDoc} */ @Override public Iterator sparseIterator() { final Iterator i = v.sparseIterator(); return new Iterator() { /** The current entry. */ private final UnmodifiableEntry e = new UnmodifiableEntry(); /** {@inheritDoc} */ public boolean hasNext() { return i.hasNext(); } /** {@inheritDoc} */ public Entry next() { e.setIndex(i.next().getIndex()); return e; } /** * {@inheritDoc} * * @throws MathUnsupportedOperationException in all * circumstances. */ public void remove() throws MathUnsupportedOperationException { throw new MathUnsupportedOperationException(); } }; } /** {@inheritDoc} */ @Override public RealVector copy() { return v.copy(); } /** {@inheritDoc} */ @Override public RealVector add(RealVector w) throws DimensionMismatchException { return v.add(w); } /** {@inheritDoc} */ @Override public RealVector subtract(RealVector w) throws DimensionMismatchException { return v.subtract(w); } /** {@inheritDoc} */ @Override public RealVector mapAdd(double d) { return v.mapAdd(d); } /** * {@inheritDoc} * * @throws MathUnsupportedOperationException in all * circumstances. */ @Override public RealVector mapAddToSelf(double d) throws MathUnsupportedOperationException { throw new MathUnsupportedOperationException(); } /** {@inheritDoc} */ @Override public RealVector mapSubtract(double d) { return v.mapSubtract(d); } /** * {@inheritDoc} * * @throws MathUnsupportedOperationException in all * circumstances. */ @Override public RealVector mapSubtractToSelf(double d) throws MathUnsupportedOperationException { throw new MathUnsupportedOperationException(); } /** {@inheritDoc} */ @Override public RealVector mapMultiply(double d) { return v.mapMultiply(d); } /** * {@inheritDoc} * * @throws MathUnsupportedOperationException in all * circumstances. */ @Override public RealVector mapMultiplyToSelf(double d) throws MathUnsupportedOperationException { throw new MathUnsupportedOperationException(); } /** {@inheritDoc} */ @Override public RealVector mapDivide(double d) { return v.mapDivide(d); } /** * {@inheritDoc} * * @throws MathUnsupportedOperationException in all * circumstances. */ @Override public RealVector mapDivideToSelf(double d) throws MathUnsupportedOperationException { throw new MathUnsupportedOperationException(); } /** {@inheritDoc} */ @Override public RealVector ebeMultiply(RealVector w) throws DimensionMismatchException { return v.ebeMultiply(w); } /** {@inheritDoc} */ @Override public RealVector ebeDivide(RealVector w) throws DimensionMismatchException { return v.ebeDivide(w); } /** {@inheritDoc} */ @Override public double dotProduct(RealVector w) throws DimensionMismatchException { return v.dotProduct(w); } /** {@inheritDoc} */ @Override public double cosine(RealVector w) throws DimensionMismatchException, MathArithmeticException { return v.cosine(w); } /** {@inheritDoc} */ @Override public double getNorm() { return v.getNorm(); } /** {@inheritDoc} */ @Override public double getL1Norm() { return v.getL1Norm(); } /** {@inheritDoc} */ @Override public double getLInfNorm() { return v.getLInfNorm(); } /** {@inheritDoc} */ @Override public double getDistance(RealVector w) throws DimensionMismatchException { return v.getDistance(w); } /** {@inheritDoc} */ @Override public double getL1Distance(RealVector w) throws DimensionMismatchException { return v.getL1Distance(w); } /** {@inheritDoc} */ @Override public double getLInfDistance(RealVector w) throws DimensionMismatchException { return v.getLInfDistance(w); } /** {@inheritDoc} */ @Override public RealVector unitVector() throws MathArithmeticException { return v.unitVector(); } /** * {@inheritDoc} * * @throws MathUnsupportedOperationException in all * circumstances. */ @Override public void unitize() throws MathUnsupportedOperationException { throw new MathUnsupportedOperationException(); } /** {@inheritDoc} */ @Override public RealMatrix outerProduct(RealVector w) { return v.outerProduct(w); } /** {@inheritDoc} */ @Override public double getEntry(int index) throws OutOfRangeException { return v.getEntry(index); } /** * {@inheritDoc} * * @throws MathUnsupportedOperationException in all * circumstances. */ @Override public void setEntry(int index, double value) throws MathUnsupportedOperationException { throw new MathUnsupportedOperationException(); } /** * {@inheritDoc} * * @throws MathUnsupportedOperationException in all * circumstances. */ @Override public void addToEntry(int index, double value) throws MathUnsupportedOperationException { throw new MathUnsupportedOperationException(); } /** {@inheritDoc} */ @Override public int getDimension() { return v.getDimension(); } /** {@inheritDoc} */ @Override public RealVector append(RealVector w) { return v.append(w); } /** {@inheritDoc} */ @Override public RealVector append(double d) { return v.append(d); } /** {@inheritDoc} */ @Override public RealVector getSubVector(int index, int n) throws OutOfRangeException, NotPositiveException { return v.getSubVector(index, n); } /** * {@inheritDoc} * * @throws MathUnsupportedOperationException in all * circumstances. */ @Override public void setSubVector(int index, RealVector w) throws MathUnsupportedOperationException { throw new MathUnsupportedOperationException(); } /** * {@inheritDoc} * * @throws MathUnsupportedOperationException in all * circumstances. */ @Override public void set(double value) throws MathUnsupportedOperationException { throw new MathUnsupportedOperationException(); } /** {@inheritDoc} */ @Override public double[] toArray() { return v.toArray(); } /** {@inheritDoc} */ @Override public boolean isNaN() { return v.isNaN(); } /** {@inheritDoc} */ @Override public boolean isInfinite() { return v.isInfinite(); } /** {@inheritDoc} */ @Override public RealVector combine(double a, double b, RealVector y) throws DimensionMismatchException { return v.combine(a, b, y); } /** * {@inheritDoc} * * @throws MathUnsupportedOperationException in all * circumstances. */ @Override public RealVector combineToSelf(double a, double b, RealVector y) throws MathUnsupportedOperationException { throw new MathUnsupportedOperationException(); } /** An entry in the vector. */ class UnmodifiableEntry extends Entry { /** {@inheritDoc} */ @Override public double getValue() { return v.getEntry(getIndex()); } /** * {@inheritDoc} * * @throws MathUnsupportedOperationException in all * circumstances. */ @Override public void setValue(double value) throws MathUnsupportedOperationException { throw new MathUnsupportedOperationException(); } } }; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy