All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.ode.MultistepIntegrator Maven / Gradle / Ivy

There is a newer version: 2.12.15
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode;

import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MathIllegalStateException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.NoBracketingException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.linear.Array2DRowRealMatrix;
import org.apache.commons.math3.ode.nonstiff.AdaptiveStepsizeIntegrator;
import org.apache.commons.math3.ode.nonstiff.DormandPrince853Integrator;
import org.apache.commons.math3.ode.sampling.StepHandler;
import org.apache.commons.math3.ode.sampling.StepInterpolator;
import org.apache.commons.math3.util.FastMath;

/**
 * This class is the base class for multistep integrators for Ordinary
 * Differential Equations.
 * 

We define scaled derivatives si(n) at step n as: *

 * s1(n) = h y'n for first derivative
 * s2(n) = h2/2 y''n for second derivative
 * s3(n) = h3/6 y'''n for third derivative
 * ...
 * sk(n) = hk/k! y(k)n for kth derivative
 * 

*

Rather than storing several previous steps separately, this implementation uses * the Nordsieck vector with higher degrees scaled derivatives all taken at the same * step (yn, s1(n) and rn) where rn is defined as: *

 * rn = [ s2(n), s3(n) ... sk(n) ]T
 * 
* (we omit the k index in the notation for clarity)

*

* Multistep integrators with Nordsieck representation are highly sensitive to * large step changes because when the step is multiplied by factor a, the * kth component of the Nordsieck vector is multiplied by ak * and the last components are the least accurate ones. The default max growth * factor is therefore set to a quite low value: 21/order. *

* * @see org.apache.commons.math3.ode.nonstiff.AdamsBashforthIntegrator * @see org.apache.commons.math3.ode.nonstiff.AdamsMoultonIntegrator * @since 2.0 */ public abstract class MultistepIntegrator extends AdaptiveStepsizeIntegrator { /** First scaled derivative (h y'). */ protected double[] scaled; /** Nordsieck matrix of the higher scaled derivatives. *

(h2/2 y'', h3/6 y''' ..., hk/k! y(k))

*/ protected Array2DRowRealMatrix nordsieck; /** Starter integrator. */ private FirstOrderIntegrator starter; /** Number of steps of the multistep method (excluding the one being computed). */ private final int nSteps; /** Stepsize control exponent. */ private double exp; /** Safety factor for stepsize control. */ private double safety; /** Minimal reduction factor for stepsize control. */ private double minReduction; /** Maximal growth factor for stepsize control. */ private double maxGrowth; /** * Build a multistep integrator with the given stepsize bounds. *

The default starter integrator is set to the {@link * DormandPrince853Integrator Dormand-Prince 8(5,3)} integrator with * some defaults settings.

*

* The default max growth factor is set to a quite low value: 21/order. *

* @param name name of the method * @param nSteps number of steps of the multistep method * (excluding the one being computed) * @param order order of the method * @param minStep minimal step (must be positive even for backward * integration), the last step can be smaller than this * @param maxStep maximal step (must be positive even for backward * integration) * @param scalAbsoluteTolerance allowed absolute error * @param scalRelativeTolerance allowed relative error * @exception NumberIsTooSmallException if number of steps is smaller than 2 */ protected MultistepIntegrator(final String name, final int nSteps, final int order, final double minStep, final double maxStep, final double scalAbsoluteTolerance, final double scalRelativeTolerance) throws NumberIsTooSmallException { super(name, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance); if (nSteps < 2) { throw new NumberIsTooSmallException( LocalizedFormats.INTEGRATION_METHOD_NEEDS_AT_LEAST_TWO_PREVIOUS_POINTS, nSteps, 2, true); } starter = new DormandPrince853Integrator(minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance); this.nSteps = nSteps; exp = -1.0 / order; // set the default values of the algorithm control parameters setSafety(0.9); setMinReduction(0.2); setMaxGrowth(FastMath.pow(2.0, -exp)); } /** * Build a multistep integrator with the given stepsize bounds. *

The default starter integrator is set to the {@link * DormandPrince853Integrator Dormand-Prince 8(5,3)} integrator with * some defaults settings.

*

* The default max growth factor is set to a quite low value: 21/order. *

* @param name name of the method * @param nSteps number of steps of the multistep method * (excluding the one being computed) * @param order order of the method * @param minStep minimal step (must be positive even for backward * integration), the last step can be smaller than this * @param maxStep maximal step (must be positive even for backward * integration) * @param vecAbsoluteTolerance allowed absolute error * @param vecRelativeTolerance allowed relative error */ protected MultistepIntegrator(final String name, final int nSteps, final int order, final double minStep, final double maxStep, final double[] vecAbsoluteTolerance, final double[] vecRelativeTolerance) { super(name, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance); starter = new DormandPrince853Integrator(minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance); this.nSteps = nSteps; exp = -1.0 / order; // set the default values of the algorithm control parameters setSafety(0.9); setMinReduction(0.2); setMaxGrowth(FastMath.pow(2.0, -exp)); } /** * Get the starter integrator. * @return starter integrator */ public ODEIntegrator getStarterIntegrator() { return starter; } /** * Set the starter integrator. *

The various step and event handlers for this starter integrator * will be managed automatically by the multi-step integrator. Any * user configuration for these elements will be cleared before use.

* @param starterIntegrator starter integrator */ public void setStarterIntegrator(FirstOrderIntegrator starterIntegrator) { this.starter = starterIntegrator; } /** Start the integration. *

This method computes one step using the underlying starter integrator, * and initializes the Nordsieck vector at step start. The starter integrator * purpose is only to establish initial conditions, it does not really change * time by itself. The top level multistep integrator remains in charge of * handling time propagation and events handling as it will starts its own * computation right from the beginning. In a sense, the starter integrator * can be seen as a dummy one and so it will never trigger any user event nor * call any user step handler.

* @param t0 initial time * @param y0 initial value of the state vector at t0 * @param t target time for the integration * (can be set to a value smaller than t0 for backward integration) * @exception DimensionMismatchException if arrays dimension do not match equations settings * @exception NumberIsTooSmallException if integration step is too small * @exception MaxCountExceededException if the number of functions evaluations is exceeded * @exception NoBracketingException if the location of an event cannot be bracketed */ protected void start(final double t0, final double[] y0, final double t) throws DimensionMismatchException, NumberIsTooSmallException, MaxCountExceededException, NoBracketingException { // make sure NO user event nor user step handler is triggered, // this is the task of the top level integrator, not the task // of the starter integrator starter.clearEventHandlers(); starter.clearStepHandlers(); // set up one specific step handler to extract initial Nordsieck vector starter.addStepHandler(new NordsieckInitializer((nSteps + 3) / 2, y0.length)); // start integration, expecting a InitializationCompletedMarkerException try { if (starter instanceof AbstractIntegrator) { ((AbstractIntegrator) starter).integrate(getExpandable(), t); } else { starter.integrate(new FirstOrderDifferentialEquations() { /** {@inheritDoc} */ public int getDimension() { return getExpandable().getTotalDimension(); } /** {@inheritDoc} */ public void computeDerivatives(double t, double[] y, double[] yDot) { getExpandable().computeDerivatives(t, y, yDot); } }, t0, y0, t, new double[y0.length]); } // we should not reach this step throw new MathIllegalStateException(LocalizedFormats.MULTISTEP_STARTER_STOPPED_EARLY); } catch (InitializationCompletedMarkerException icme) { // NOPMD // this is the expected nominal interruption of the start integrator // count the evaluations used by the starter getCounter().increment(starter.getEvaluations()); } // remove the specific step handler starter.clearStepHandlers(); } /** Initialize the high order scaled derivatives at step start. * @param h step size to use for scaling * @param t first steps times * @param y first steps states * @param yDot first steps derivatives * @return Nordieck vector at first step (h2/2 y''n, * h3/6 y'''n ... hk/k! y(k)n) */ protected abstract Array2DRowRealMatrix initializeHighOrderDerivatives(final double h, final double[] t, final double[][] y, final double[][] yDot); /** Get the minimal reduction factor for stepsize control. * @return minimal reduction factor */ public double getMinReduction() { return minReduction; } /** Set the minimal reduction factor for stepsize control. * @param minReduction minimal reduction factor */ public void setMinReduction(final double minReduction) { this.minReduction = minReduction; } /** Get the maximal growth factor for stepsize control. * @return maximal growth factor */ public double getMaxGrowth() { return maxGrowth; } /** Set the maximal growth factor for stepsize control. * @param maxGrowth maximal growth factor */ public void setMaxGrowth(final double maxGrowth) { this.maxGrowth = maxGrowth; } /** Get the safety factor for stepsize control. * @return safety factor */ public double getSafety() { return safety; } /** Set the safety factor for stepsize control. * @param safety safety factor */ public void setSafety(final double safety) { this.safety = safety; } /** Get the number of steps of the multistep method (excluding the one being computed). * @return number of steps of the multistep method (excluding the one being computed) */ public int getNSteps() { return nSteps; } /** Compute step grow/shrink factor according to normalized error. * @param error normalized error of the current step * @return grow/shrink factor for next step */ protected double computeStepGrowShrinkFactor(final double error) { return FastMath.min(maxGrowth, FastMath.max(minReduction, safety * FastMath.pow(error, exp))); } /** Transformer used to convert the first step to Nordsieck representation. * @deprecated as of 3.6 this unused interface is deprecated */ @Deprecated public interface NordsieckTransformer { /** Initialize the high order scaled derivatives at step start. * @param h step size to use for scaling * @param t first steps times * @param y first steps states * @param yDot first steps derivatives * @return Nordieck vector at first step (h2/2 y''n, * h3/6 y'''n ... hk/k! y(k)n) */ Array2DRowRealMatrix initializeHighOrderDerivatives(final double h, final double[] t, final double[][] y, final double[][] yDot); } /** Specialized step handler storing the first step. */ private class NordsieckInitializer implements StepHandler { /** Steps counter. */ private int count; /** First steps times. */ private final double[] t; /** First steps states. */ private final double[][] y; /** First steps derivatives. */ private final double[][] yDot; /** Simple constructor. * @param nbStartPoints number of start points (including the initial point) * @param n problem dimension */ NordsieckInitializer(final int nbStartPoints, final int n) { this.count = 0; this.t = new double[nbStartPoints]; this.y = new double[nbStartPoints][n]; this.yDot = new double[nbStartPoints][n]; } /** {@inheritDoc} */ public void handleStep(StepInterpolator interpolator, boolean isLast) throws MaxCountExceededException { final double prev = interpolator.getPreviousTime(); final double curr = interpolator.getCurrentTime(); if (count == 0) { // first step, we need to store also the point at the beginning of the step interpolator.setInterpolatedTime(prev); t[0] = prev; final ExpandableStatefulODE expandable = getExpandable(); final EquationsMapper primary = expandable.getPrimaryMapper(); primary.insertEquationData(interpolator.getInterpolatedState(), y[count]); primary.insertEquationData(interpolator.getInterpolatedDerivatives(), yDot[count]); int index = 0; for (final EquationsMapper secondary : expandable.getSecondaryMappers()) { secondary.insertEquationData(interpolator.getInterpolatedSecondaryState(index), y[count]); secondary.insertEquationData(interpolator.getInterpolatedSecondaryDerivatives(index), yDot[count]); ++index; } } // store the point at the end of the step ++count; interpolator.setInterpolatedTime(curr); t[count] = curr; final ExpandableStatefulODE expandable = getExpandable(); final EquationsMapper primary = expandable.getPrimaryMapper(); primary.insertEquationData(interpolator.getInterpolatedState(), y[count]); primary.insertEquationData(interpolator.getInterpolatedDerivatives(), yDot[count]); int index = 0; for (final EquationsMapper secondary : expandable.getSecondaryMappers()) { secondary.insertEquationData(interpolator.getInterpolatedSecondaryState(index), y[count]); secondary.insertEquationData(interpolator.getInterpolatedSecondaryDerivatives(index), yDot[count]); ++index; } if (count == t.length - 1) { // this was the last point we needed, we can compute the derivatives stepStart = t[0]; stepSize = (t[t.length - 1] - t[0]) / (t.length - 1); // first scaled derivative scaled = yDot[0].clone(); for (int j = 0; j < scaled.length; ++j) { scaled[j] *= stepSize; } // higher order derivatives nordsieck = initializeHighOrderDerivatives(stepSize, t, y, yDot); // stop the integrator now that all needed steps have been handled throw new InitializationCompletedMarkerException(); } } /** {@inheritDoc} */ public void init(double t0, double[] y0, double time) { // nothing to do } } /** Marker exception used ONLY to stop the starter integrator after first step. */ private static class InitializationCompletedMarkerException extends RuntimeException { /** Serializable version identifier. */ private static final long serialVersionUID = -1914085471038046418L; /** Simple constructor. */ InitializationCompletedMarkerException() { super((Throwable) null); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy