All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.analysis.interpolation.HermiteInterpolator Maven / Gradle / Ivy

There is a newer version: 2.12.15
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.analysis.interpolation;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableVectorFunction;
import org.apache.commons.math3.analysis.polynomials.PolynomialFunction;
import org.apache.commons.math3.exception.MathArithmeticException;
import org.apache.commons.math3.exception.NoDataException;
import org.apache.commons.math3.exception.ZeroException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.CombinatoricsUtils;

/** Polynomial interpolator using both sample values and sample derivatives.
 * 

* The interpolation polynomials match all sample points, including both values * and provided derivatives. There is one polynomial for each component of * the values vector. All polynomials have the same degree. The degree of the * polynomials depends on the number of points and number of derivatives at each * point. For example the interpolation polynomials for n sample points without * any derivatives all have degree n-1. The interpolation polynomials for n * sample points with the two extreme points having value and first derivative * and the remaining points having value only all have degree n+1. The * interpolation polynomial for n sample points with value, first and second * derivative for all points all have degree 3n-1. *

* * @since 3.1 */ public class HermiteInterpolator implements UnivariateDifferentiableVectorFunction { /** Sample abscissae. */ private final List abscissae; /** Top diagonal of the divided differences array. */ private final List topDiagonal; /** Bottom diagonal of the divided differences array. */ private final List bottomDiagonal; /** Create an empty interpolator. */ public HermiteInterpolator() { this.abscissae = new ArrayList(); this.topDiagonal = new ArrayList(); this.bottomDiagonal = new ArrayList(); } /** Add a sample point. *

* This method must be called once for each sample point. It is allowed to * mix some calls with values only with calls with values and first * derivatives. *

*

* The point abscissae for all calls must be different. *

* @param x abscissa of the sample point * @param value value and derivatives of the sample point * (if only one row is passed, it is the value, if two rows are * passed the first one is the value and the second the derivative * and so on) * @exception ZeroException if the abscissa difference between added point * and a previous point is zero (i.e. the two points are at same abscissa) * @exception MathArithmeticException if the number of derivatives is larger * than 20, which prevents computation of a factorial */ public void addSamplePoint(final double x, final double[] ... value) throws ZeroException, MathArithmeticException { for (int i = 0; i < value.length; ++i) { final double[] y = value[i].clone(); if (i > 1) { double inv = 1.0 / CombinatoricsUtils.factorial(i); for (int j = 0; j < y.length; ++j) { y[j] *= inv; } } // update the bottom diagonal of the divided differences array final int n = abscissae.size(); bottomDiagonal.add(n - i, y); double[] bottom0 = y; for (int j = i; j < n; ++j) { final double[] bottom1 = bottomDiagonal.get(n - (j + 1)); final double inv = 1.0 / (x - abscissae.get(n - (j + 1))); if (Double.isInfinite(inv)) { throw new ZeroException(LocalizedFormats.DUPLICATED_ABSCISSA_DIVISION_BY_ZERO, x); } for (int k = 0; k < y.length; ++k) { bottom1[k] = inv * (bottom0[k] - bottom1[k]); } bottom0 = bottom1; } // update the top diagonal of the divided differences array topDiagonal.add(bottom0.clone()); // update the abscissae array abscissae.add(x); } } /** Compute the interpolation polynomials. * @return interpolation polynomials array * @exception NoDataException if sample is empty */ public PolynomialFunction[] getPolynomials() throws NoDataException { // safety check checkInterpolation(); // iteration initialization final PolynomialFunction zero = polynomial(0); PolynomialFunction[] polynomials = new PolynomialFunction[topDiagonal.get(0).length]; for (int i = 0; i < polynomials.length; ++i) { polynomials[i] = zero; } PolynomialFunction coeff = polynomial(1); // build the polynomials by iterating on the top diagonal of the divided differences array for (int i = 0; i < topDiagonal.size(); ++i) { double[] tdi = topDiagonal.get(i); for (int k = 0; k < polynomials.length; ++k) { polynomials[k] = polynomials[k].add(coeff.multiply(polynomial(tdi[k]))); } coeff = coeff.multiply(polynomial(-abscissae.get(i), 1.0)); } return polynomials; } /** Interpolate value at a specified abscissa. *

* Calling this method is equivalent to call the {@link PolynomialFunction#value(double) * value} methods of all polynomials returned by {@link #getPolynomials() getPolynomials}, * except it does not build the intermediate polynomials, so this method is faster and * numerically more stable. *

* @param x interpolation abscissa * @return interpolated value * @exception NoDataException if sample is empty */ public double[] value(double x) throws NoDataException { // safety check checkInterpolation(); final double[] value = new double[topDiagonal.get(0).length]; double valueCoeff = 1; for (int i = 0; i < topDiagonal.size(); ++i) { double[] dividedDifference = topDiagonal.get(i); for (int k = 0; k < value.length; ++k) { value[k] += dividedDifference[k] * valueCoeff; } final double deltaX = x - abscissae.get(i); valueCoeff *= deltaX; } return value; } /** Interpolate value at a specified abscissa. *

* Calling this method is equivalent to call the {@link * PolynomialFunction#value(DerivativeStructure) value} methods of all polynomials * returned by {@link #getPolynomials() getPolynomials}, except it does not build the * intermediate polynomials, so this method is faster and numerically more stable. *

* @param x interpolation abscissa * @return interpolated value * @exception NoDataException if sample is empty */ public DerivativeStructure[] value(final DerivativeStructure x) throws NoDataException { // safety check checkInterpolation(); final DerivativeStructure[] value = new DerivativeStructure[topDiagonal.get(0).length]; Arrays.fill(value, x.getField().getZero()); DerivativeStructure valueCoeff = x.getField().getOne(); for (int i = 0; i < topDiagonal.size(); ++i) { double[] dividedDifference = topDiagonal.get(i); for (int k = 0; k < value.length; ++k) { value[k] = value[k].add(valueCoeff.multiply(dividedDifference[k])); } final DerivativeStructure deltaX = x.subtract(abscissae.get(i)); valueCoeff = valueCoeff.multiply(deltaX); } return value; } /** Check interpolation can be performed. * @exception NoDataException if interpolation cannot be performed * because sample is empty */ private void checkInterpolation() throws NoDataException { if (abscissae.isEmpty()) { throw new NoDataException(LocalizedFormats.EMPTY_INTERPOLATION_SAMPLE); } } /** Create a polynomial from its coefficients. * @param c polynomials coefficients * @return polynomial */ private PolynomialFunction polynomial(double ... c) { return new PolynomialFunction(c); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy