All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.ode.nonstiff.AdamsNordsieckFieldTransformer Maven / Gradle / Ivy

There is a newer version: 2.12.15
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;

import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.linear.Array2DRowFieldMatrix;
import org.apache.commons.math3.linear.ArrayFieldVector;
import org.apache.commons.math3.linear.FieldDecompositionSolver;
import org.apache.commons.math3.linear.FieldLUDecomposition;
import org.apache.commons.math3.linear.FieldMatrix;
import org.apache.commons.math3.util.MathArrays;

/** Transformer to Nordsieck vectors for Adams integrators.
 * 

This class is used by {@link AdamsBashforthIntegrator Adams-Bashforth} and * {@link AdamsMoultonIntegrator Adams-Moulton} integrators to convert between * classical representation with several previous first derivatives and Nordsieck * representation with higher order scaled derivatives.

* *

We define scaled derivatives si(n) at step n as: *

 * s1(n) = h y'n for first derivative
 * s2(n) = h2/2 y''n for second derivative
 * s3(n) = h3/6 y'''n for third derivative
 * ...
 * sk(n) = hk/k! y(k)n for kth derivative
 * 

* *

With the previous definition, the classical representation of multistep methods * uses first derivatives only, i.e. it handles yn, s1(n) and * qn where qn is defined as: *

 *   qn = [ s1(n-1) s1(n-2) ... s1(n-(k-1)) ]T
 * 
* (we omit the k index in the notation for clarity).

* *

Another possible representation uses the Nordsieck vector with * higher degrees scaled derivatives all taken at the same step, i.e it handles yn, * s1(n) and rn) where rn is defined as: *

 * rn = [ s2(n), s3(n) ... sk(n) ]T
 * 
* (here again we omit the k index in the notation for clarity) *

* *

Taylor series formulas show that for any index offset i, s1(n-i) can be * computed from s1(n), s2(n) ... sk(n), the formula being exact * for degree k polynomials. *

 * s1(n-i) = s1(n) + ∑j>0 (j+1) (-i)j sj+1(n)
 * 
* The previous formula can be used with several values for i to compute the transform between * classical representation and Nordsieck vector at step end. The transform between rn * and qn resulting from the Taylor series formulas above is: *
 * qn = s1(n) u + P rn
 * 
* where u is the [ 1 1 ... 1 ]T vector and P is the (k-1)×(k-1) matrix built * with the (j+1) (-i)j terms with i being the row number starting from 1 and j being * the column number starting from 1: *
 *        [  -2   3   -4    5  ... ]
 *        [  -4  12  -32   80  ... ]
 *   P =  [  -6  27 -108  405  ... ]
 *        [  -8  48 -256 1280  ... ]
 *        [          ...           ]
 * 

* *

Changing -i into +i in the formula above can be used to compute a similar transform between * classical representation and Nordsieck vector at step start. The resulting matrix is simply * the absolute value of matrix P.

* *

For {@link AdamsBashforthIntegrator Adams-Bashforth} method, the Nordsieck vector * at step n+1 is computed from the Nordsieck vector at step n as follows: *

    *
  • yn+1 = yn + s1(n) + uT rn
  • *
  • s1(n+1) = h f(tn+1, yn+1)
  • *
  • rn+1 = (s1(n) - s1(n+1)) P-1 u + P-1 A P rn
  • *
* where A is a rows shifting matrix (the lower left part is an identity matrix): *
 *        [ 0 0   ...  0 0 | 0 ]
 *        [ ---------------+---]
 *        [ 1 0   ...  0 0 | 0 ]
 *    A = [ 0 1   ...  0 0 | 0 ]
 *        [       ...      | 0 ]
 *        [ 0 0   ...  1 0 | 0 ]
 *        [ 0 0   ...  0 1 | 0 ]
 * 

* *

For {@link AdamsMoultonIntegrator Adams-Moulton} method, the predicted Nordsieck vector * at step n+1 is computed from the Nordsieck vector at step n as follows: *

    *
  • Yn+1 = yn + s1(n) + uT rn
  • *
  • S1(n+1) = h f(tn+1, Yn+1)
  • *
  • Rn+1 = (s1(n) - s1(n+1)) P-1 u + P-1 A P rn
  • *
* From this predicted vector, the corrected vector is computed as follows: *
    *
  • yn+1 = yn + S1(n+1) + [ -1 +1 -1 +1 ... ±1 ] rn+1
  • *
  • s1(n+1) = h f(tn+1, yn+1)
  • *
  • rn+1 = Rn+1 + (s1(n+1) - S1(n+1)) P-1 u
  • *
* where the upper case Yn+1, S1(n+1) and Rn+1 represent the * predicted states whereas the lower case yn+1, sn+1 and rn+1 * represent the corrected states.

* *

We observe that both methods use similar update formulas. In both cases a P-1u * vector and a P-1 A P matrix are used that do not depend on the state, * they only depend on k. This class handles these transformations.

* * @param the type of the field elements * @since 3.6 */ public class AdamsNordsieckFieldTransformer> { /** Cache for already computed coefficients. */ private static final Map>, AdamsNordsieckFieldTransformer>>> CACHE = new HashMap>, AdamsNordsieckFieldTransformer>>>(); /** Field to which the time and state vector elements belong. */ private final Field field; /** Update matrix for the higher order derivatives h2/2 y'', h3/6 y''' ... */ private final Array2DRowFieldMatrix update; /** Update coefficients of the higher order derivatives wrt y'. */ private final T[] c1; /** Simple constructor. * @param field field to which the time and state vector elements belong * @param n number of steps of the multistep method * (excluding the one being computed) */ private AdamsNordsieckFieldTransformer(final Field field, final int n) { this.field = field; final int rows = n - 1; // compute coefficients FieldMatrix bigP = buildP(rows); FieldDecompositionSolver pSolver = new FieldLUDecomposition(bigP).getSolver(); T[] u = MathArrays.buildArray(field, rows); Arrays.fill(u, field.getOne()); c1 = pSolver.solve(new ArrayFieldVector(u, false)).toArray(); // update coefficients are computed by combining transform from // Nordsieck to multistep, then shifting rows to represent step advance // then applying inverse transform T[][] shiftedP = bigP.getData(); for (int i = shiftedP.length - 1; i > 0; --i) { // shift rows shiftedP[i] = shiftedP[i - 1]; } shiftedP[0] = MathArrays.buildArray(field, rows); Arrays.fill(shiftedP[0], field.getZero()); update = new Array2DRowFieldMatrix(pSolver.solve(new Array2DRowFieldMatrix(shiftedP, false)).getData()); } /** Get the Nordsieck transformer for a given field and number of steps. * @param field field to which the time and state vector elements belong * @param nSteps number of steps of the multistep method * (excluding the one being computed) * @return Nordsieck transformer for the specified field and number of steps * @param the type of the field elements */ @SuppressWarnings("unchecked") public static > AdamsNordsieckFieldTransformer getInstance(final Field field, final int nSteps) { synchronized(CACHE) { Map>, AdamsNordsieckFieldTransformer>> map = CACHE.get(nSteps); if (map == null) { map = new HashMap>, AdamsNordsieckFieldTransformer>>(); CACHE.put(nSteps, map); } @SuppressWarnings("rawtypes") // use rawtype to avoid compilation problems with java 1.5 AdamsNordsieckFieldTransformer t = map.get(field); if (t == null) { t = new AdamsNordsieckFieldTransformer(field, nSteps); map.put(field, (AdamsNordsieckFieldTransformer) t); } return (AdamsNordsieckFieldTransformer) t; } } /** Build the P matrix. *

The P matrix general terms are shifted (j+1) (-i)j terms * with i being the row number starting from 1 and j being the column * number starting from 1: *

     *        [  -2   3   -4    5  ... ]
     *        [  -4  12  -32   80  ... ]
     *   P =  [  -6  27 -108  405  ... ]
     *        [  -8  48 -256 1280  ... ]
     *        [          ...           ]
     * 

* @param rows number of rows of the matrix * @return P matrix */ private FieldMatrix buildP(final int rows) { final T[][] pData = MathArrays.buildArray(field, rows, rows); for (int i = 1; i <= pData.length; ++i) { // build the P matrix elements from Taylor series formulas final T[] pI = pData[i - 1]; final int factor = -i; T aj = field.getZero().add(factor); for (int j = 1; j <= pI.length; ++j) { pI[j - 1] = aj.multiply(j + 1); aj = aj.multiply(factor); } } return new Array2DRowFieldMatrix(pData, false); } /** Initialize the high order scaled derivatives at step start. * @param h step size to use for scaling * @param t first steps times * @param y first steps states * @param yDot first steps derivatives * @return Nordieck vector at start of first step (h2/2 y''n, * h3/6 y'''n ... hk/k! y(k)n) */ public Array2DRowFieldMatrix initializeHighOrderDerivatives(final T h, final T[] t, final T[][] y, final T[][] yDot) { // using Taylor series with di = ti - t0, we get: // y(ti) - y(t0) - di y'(t0) = di^2 / h^2 s2 + ... + di^k / h^k sk + O(h^k) // y'(ti) - y'(t0) = 2 di / h^2 s2 + ... + k di^(k-1) / h^k sk + O(h^(k-1)) // we write these relations for i = 1 to i= 1+n/2 as a set of n + 2 linear // equations depending on the Nordsieck vector [s2 ... sk rk], so s2 to sk correspond // to the appropriately truncated Taylor expansion, and rk is the Taylor remainder. // The goal is to have s2 to sk as accurate as possible considering the fact the sum is // truncated and we don't want the error terms to be included in s2 ... sk, so we need // to solve also for the remainder final T[][] a = MathArrays.buildArray(field, c1.length + 1, c1.length + 1); final T[][] b = MathArrays.buildArray(field, c1.length + 1, y[0].length); final T[] y0 = y[0]; final T[] yDot0 = yDot[0]; for (int i = 1; i < y.length; ++i) { final T di = t[i].subtract(t[0]); final T ratio = di.divide(h); T dikM1Ohk = h.reciprocal(); // linear coefficients of equations // y(ti) - y(t0) - di y'(t0) and y'(ti) - y'(t0) final T[] aI = a[2 * i - 2]; final T[] aDotI = (2 * i - 1) < a.length ? a[2 * i - 1] : null; for (int j = 0; j < aI.length; ++j) { dikM1Ohk = dikM1Ohk.multiply(ratio); aI[j] = di.multiply(dikM1Ohk); if (aDotI != null) { aDotI[j] = dikM1Ohk.multiply(j + 2); } } // expected value of the previous equations final T[] yI = y[i]; final T[] yDotI = yDot[i]; final T[] bI = b[2 * i - 2]; final T[] bDotI = (2 * i - 1) < b.length ? b[2 * i - 1] : null; for (int j = 0; j < yI.length; ++j) { bI[j] = yI[j].subtract(y0[j]).subtract(di.multiply(yDot0[j])); if (bDotI != null) { bDotI[j] = yDotI[j].subtract(yDot0[j]); } } } // solve the linear system to get the best estimate of the Nordsieck vector [s2 ... sk], // with the additional terms s(k+1) and c grabbing the parts after the truncated Taylor expansion final FieldLUDecomposition decomposition = new FieldLUDecomposition(new Array2DRowFieldMatrix(a, false)); final FieldMatrix x = decomposition.getSolver().solve(new Array2DRowFieldMatrix(b, false)); // extract just the Nordsieck vector [s2 ... sk] final Array2DRowFieldMatrix truncatedX = new Array2DRowFieldMatrix(field, x.getRowDimension() - 1, x.getColumnDimension()); for (int i = 0; i < truncatedX.getRowDimension(); ++i) { for (int j = 0; j < truncatedX.getColumnDimension(); ++j) { truncatedX.setEntry(i, j, x.getEntry(i, j)); } } return truncatedX; } /** Update the high order scaled derivatives for Adams integrators (phase 1). *

The complete update of high order derivatives has a form similar to: *

     * rn+1 = (s1(n) - s1(n+1)) P-1 u + P-1 A P rn
     * 
* this method computes the P-1 A P rn part.

* @param highOrder high order scaled derivatives * (h2/2 y'', ... hk/k! y(k)) * @return updated high order derivatives * @see #updateHighOrderDerivativesPhase2(RealFieldElement[], RealFieldElement[], Array2DRowFieldMatrix) */ public Array2DRowFieldMatrix updateHighOrderDerivativesPhase1(final Array2DRowFieldMatrix highOrder) { return update.multiply(highOrder); } /** Update the high order scaled derivatives Adams integrators (phase 2). *

The complete update of high order derivatives has a form similar to: *

     * rn+1 = (s1(n) - s1(n+1)) P-1 u + P-1 A P rn
     * 
* this method computes the (s1(n) - s1(n+1)) P-1 u part.

*

Phase 1 of the update must already have been performed.

* @param start first order scaled derivatives at step start * @param end first order scaled derivatives at step end * @param highOrder high order scaled derivatives, will be modified * (h2/2 y'', ... hk/k! y(k)) * @see #updateHighOrderDerivativesPhase1(Array2DRowFieldMatrix) */ public void updateHighOrderDerivativesPhase2(final T[] start, final T[] end, final Array2DRowFieldMatrix highOrder) { final T[][] data = highOrder.getDataRef(); for (int i = 0; i < data.length; ++i) { final T[] dataI = data[i]; final T c1I = c1[i]; for (int j = 0; j < dataI.length; ++j) { dataI[j] = dataI[j].add(c1I.multiply(start[j].subtract(end[j]))); } } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy