org.apache.commons.math3.dfp.BracketingNthOrderBrentSolverDFP Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of virtdata-lib-realer Show documentation
Show all versions of virtdata-lib-realer Show documentation
With inspiration from other libraries
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.dfp;
import org.apache.commons.math3.analysis.RealFieldUnivariateFunction;
import org.apache.commons.math3.analysis.solvers.AllowedSolution;
import org.apache.commons.math3.analysis.solvers.FieldBracketingNthOrderBrentSolver;
import org.apache.commons.math3.exception.NoBracketingException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.util.MathUtils;
/**
* This class implements a modification of the Brent algorithm.
*
* The changes with respect to the original Brent algorithm are:
*
* - the returned value is chosen in the current interval according
* to user specified {@link AllowedSolution},
* - the maximal order for the invert polynomial root search is
* user-specified instead of being invert quadratic only
*
*
* The given interval must bracket the root.
* @deprecated as of 3.6 replaced with {@link FieldBracketingNthOrderBrentSolver}
*/
@Deprecated
public class BracketingNthOrderBrentSolverDFP extends FieldBracketingNthOrderBrentSolver {
/**
* Construct a solver.
*
* @param relativeAccuracy Relative accuracy.
* @param absoluteAccuracy Absolute accuracy.
* @param functionValueAccuracy Function value accuracy.
* @param maximalOrder maximal order.
* @exception NumberIsTooSmallException if maximal order is lower than 2
*/
public BracketingNthOrderBrentSolverDFP(final Dfp relativeAccuracy,
final Dfp absoluteAccuracy,
final Dfp functionValueAccuracy,
final int maximalOrder)
throws NumberIsTooSmallException {
super(relativeAccuracy, absoluteAccuracy, functionValueAccuracy, maximalOrder);
}
/**
* Get the absolute accuracy.
* @return absolute accuracy
*/
@Override
public Dfp getAbsoluteAccuracy() {
return super.getAbsoluteAccuracy();
}
/**
* Get the relative accuracy.
* @return relative accuracy
*/
@Override
public Dfp getRelativeAccuracy() {
return super.getRelativeAccuracy();
}
/**
* Get the function accuracy.
* @return function accuracy
*/
@Override
public Dfp getFunctionValueAccuracy() {
return super.getFunctionValueAccuracy();
}
/**
* Solve for a zero in the given interval.
* A solver may require that the interval brackets a single zero root.
* Solvers that do require bracketing should be able to handle the case
* where one of the endpoints is itself a root.
*
* @param maxEval Maximum number of evaluations.
* @param f Function to solve.
* @param min Lower bound for the interval.
* @param max Upper bound for the interval.
* @param allowedSolution The kind of solutions that the root-finding algorithm may
* accept as solutions.
* @return a value where the function is zero.
* @exception NullArgumentException if f is null.
* @exception NoBracketingException if root cannot be bracketed
*/
public Dfp solve(final int maxEval, final UnivariateDfpFunction f,
final Dfp min, final Dfp max, final AllowedSolution allowedSolution)
throws NullArgumentException, NoBracketingException {
return solve(maxEval, f, min, max, min.add(max).divide(2), allowedSolution);
}
/**
* Solve for a zero in the given interval, start at {@code startValue}.
* A solver may require that the interval brackets a single zero root.
* Solvers that do require bracketing should be able to handle the case
* where one of the endpoints is itself a root.
*
* @param maxEval Maximum number of evaluations.
* @param f Function to solve.
* @param min Lower bound for the interval.
* @param max Upper bound for the interval.
* @param startValue Start value to use.
* @param allowedSolution The kind of solutions that the root-finding algorithm may
* accept as solutions.
* @return a value where the function is zero.
* @exception NullArgumentException if f is null.
* @exception NoBracketingException if root cannot be bracketed
*/
public Dfp solve(final int maxEval, final UnivariateDfpFunction f,
final Dfp min, final Dfp max, final Dfp startValue,
final AllowedSolution allowedSolution)
throws NullArgumentException, NoBracketingException {
// checks
MathUtils.checkNotNull(f);
// wrap the function
RealFieldUnivariateFunction fieldF = new RealFieldUnivariateFunction() {
/** {@inheritDoc} */
public Dfp value(final Dfp x) {
return f.value(x);
}
};
// delegate to general field solver
return solve(maxEval, fieldF, min, max, startValue, allowedSolution);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy