All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.ml.clustering.FuzzyKMeansClusterer Maven / Gradle / Ivy

There is a newer version: 2.12.15
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.ml.clustering;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.List;

import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.MathIllegalStateException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.linear.MatrixUtils;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.ml.distance.DistanceMeasure;
import org.apache.commons.math3.ml.distance.EuclideanDistance;
import org.apache.commons.math3.random.JDKRandomGenerator;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathArrays;
import org.apache.commons.math3.util.MathUtils;

/**
 * Fuzzy K-Means clustering algorithm.
 * 

* The Fuzzy K-Means algorithm is a variation of the classical K-Means algorithm, with the * major difference that a single data point is not uniquely assigned to a single cluster. * Instead, each point i has a set of weights uij which indicate the degree of membership * to the cluster j. *

* The algorithm then tries to minimize the objective function: *

 * J = ∑i=1..Ck=1..N uikmdik2
 * 
* with dik being the distance between data point i and the cluster center k. *

* The algorithm requires two parameters: *

    *
  • k: the number of clusters *
  • fuzziness: determines the level of cluster fuzziness, larger values lead to fuzzier clusters *
* Additional, optional parameters: *
    *
  • maxIterations: the maximum number of iterations *
  • epsilon: the convergence criteria, default is 1e-3 *
*

* The fuzzy variant of the K-Means algorithm is more robust with regard to the selection * of the initial cluster centers. * * @param type of the points to cluster * @since 3.3 */ public class FuzzyKMeansClusterer extends Clusterer { /** The default value for the convergence criteria. */ private static final double DEFAULT_EPSILON = 1e-3; /** The number of clusters. */ private final int k; /** The maximum number of iterations. */ private final int maxIterations; /** The fuzziness factor. */ private final double fuzziness; /** The convergence criteria. */ private final double epsilon; /** Random generator for choosing initial centers. */ private final RandomGenerator random; /** The membership matrix. */ private double[][] membershipMatrix; /** The list of points used in the last call to {@link #cluster(Collection)}. */ private List points; /** The list of clusters resulting from the last call to {@link #cluster(Collection)}. */ private List> clusters; /** * Creates a new instance of a FuzzyKMeansClusterer. *

* The euclidean distance will be used as default distance measure. * * @param k the number of clusters to split the data into * @param fuzziness the fuzziness factor, must be > 1.0 * @throws NumberIsTooSmallException if {@code fuzziness <= 1.0} */ public FuzzyKMeansClusterer(final int k, final double fuzziness) throws NumberIsTooSmallException { this(k, fuzziness, -1, new EuclideanDistance()); } /** * Creates a new instance of a FuzzyKMeansClusterer. * * @param k the number of clusters to split the data into * @param fuzziness the fuzziness factor, must be > 1.0 * @param maxIterations the maximum number of iterations to run the algorithm for. * If negative, no maximum will be used. * @param measure the distance measure to use * @throws NumberIsTooSmallException if {@code fuzziness <= 1.0} */ public FuzzyKMeansClusterer(final int k, final double fuzziness, final int maxIterations, final DistanceMeasure measure) throws NumberIsTooSmallException { this(k, fuzziness, maxIterations, measure, DEFAULT_EPSILON, new JDKRandomGenerator()); } /** * Creates a new instance of a FuzzyKMeansClusterer. * * @param k the number of clusters to split the data into * @param fuzziness the fuzziness factor, must be > 1.0 * @param maxIterations the maximum number of iterations to run the algorithm for. * If negative, no maximum will be used. * @param measure the distance measure to use * @param epsilon the convergence criteria (default is 1e-3) * @param random random generator to use for choosing initial centers * @throws NumberIsTooSmallException if {@code fuzziness <= 1.0} */ public FuzzyKMeansClusterer(final int k, final double fuzziness, final int maxIterations, final DistanceMeasure measure, final double epsilon, final RandomGenerator random) throws NumberIsTooSmallException { super(measure); if (fuzziness <= 1.0d) { throw new NumberIsTooSmallException(fuzziness, 1.0, false); } this.k = k; this.fuzziness = fuzziness; this.maxIterations = maxIterations; this.epsilon = epsilon; this.random = random; this.membershipMatrix = null; this.points = null; this.clusters = null; } /** * Return the number of clusters this instance will use. * @return the number of clusters */ public int getK() { return k; } /** * Returns the fuzziness factor used by this instance. * @return the fuzziness factor */ public double getFuzziness() { return fuzziness; } /** * Returns the maximum number of iterations this instance will use. * @return the maximum number of iterations, or -1 if no maximum is set */ public int getMaxIterations() { return maxIterations; } /** * Returns the convergence criteria used by this instance. * @return the convergence criteria */ public double getEpsilon() { return epsilon; } /** * Returns the random generator this instance will use. * @return the random generator */ public RandomGenerator getRandomGenerator() { return random; } /** * Returns the {@code nxk} membership matrix, where {@code n} is the number * of data points and {@code k} the number of clusters. *

* The element Ui,j represents the membership value for data point {@code i} * to cluster {@code j}. * * @return the membership matrix * @throws MathIllegalStateException if {@link #cluster(Collection)} has not been called before */ public RealMatrix getMembershipMatrix() { if (membershipMatrix == null) { throw new MathIllegalStateException(); } return MatrixUtils.createRealMatrix(membershipMatrix); } /** * Returns an unmodifiable list of the data points used in the last * call to {@link #cluster(Collection)}. * @return the list of data points, or {@code null} if {@link #cluster(Collection)} has * not been called before. */ public List getDataPoints() { return points; } /** * Returns the list of clusters resulting from the last call to {@link #cluster(Collection)}. * @return the list of clusters, or {@code null} if {@link #cluster(Collection)} has * not been called before. */ public List> getClusters() { return clusters; } /** * Get the value of the objective function. * @return the objective function evaluation as double value * @throws MathIllegalStateException if {@link #cluster(Collection)} has not been called before */ public double getObjectiveFunctionValue() { if (points == null || clusters == null) { throw new MathIllegalStateException(); } int i = 0; double objFunction = 0.0; for (final T point : points) { int j = 0; for (final CentroidCluster cluster : clusters) { final double dist = distance(point, cluster.getCenter()); objFunction += (dist * dist) * FastMath.pow(membershipMatrix[i][j], fuzziness); j++; } i++; } return objFunction; } /** * Performs Fuzzy K-Means cluster analysis. * * @param dataPoints the points to cluster * @return the list of clusters * @throws MathIllegalArgumentException if the data points are null or the number * of clusters is larger than the number of data points */ @Override public List> cluster(final Collection dataPoints) throws MathIllegalArgumentException { // sanity checks MathUtils.checkNotNull(dataPoints); final int size = dataPoints.size(); // number of clusters has to be smaller or equal the number of data points if (size < k) { throw new NumberIsTooSmallException(size, k, false); } // copy the input collection to an unmodifiable list with indexed access points = Collections.unmodifiableList(new ArrayList(dataPoints)); clusters = new ArrayList>(); membershipMatrix = new double[size][k]; final double[][] oldMatrix = new double[size][k]; // if no points are provided, return an empty list of clusters if (size == 0) { return clusters; } initializeMembershipMatrix(); // there is at least one point final int pointDimension = points.get(0).getPoint().length; for (int i = 0; i < k; i++) { clusters.add(new CentroidCluster(new DoublePoint(new double[pointDimension]))); } int iteration = 0; final int max = (maxIterations < 0) ? Integer.MAX_VALUE : maxIterations; double difference = 0.0; do { saveMembershipMatrix(oldMatrix); updateClusterCenters(); updateMembershipMatrix(); difference = calculateMaxMembershipChange(oldMatrix); } while (difference > epsilon && ++iteration < max); return clusters; } /** * Update the cluster centers. */ private void updateClusterCenters() { int j = 0; final List> newClusters = new ArrayList>(k); for (final CentroidCluster cluster : clusters) { final Clusterable center = cluster.getCenter(); int i = 0; double[] arr = new double[center.getPoint().length]; double sum = 0.0; for (final T point : points) { final double u = FastMath.pow(membershipMatrix[i][j], fuzziness); final double[] pointArr = point.getPoint(); for (int idx = 0; idx < arr.length; idx++) { arr[idx] += u * pointArr[idx]; } sum += u; i++; } MathArrays.scaleInPlace(1.0 / sum, arr); newClusters.add(new CentroidCluster(new DoublePoint(arr))); j++; } clusters.clear(); clusters = newClusters; } /** * Updates the membership matrix and assigns the points to the cluster with * the highest membership. */ private void updateMembershipMatrix() { for (int i = 0; i < points.size(); i++) { final T point = points.get(i); double maxMembership = Double.MIN_VALUE; int newCluster = -1; for (int j = 0; j < clusters.size(); j++) { double sum = 0.0; final double distA = FastMath.abs(distance(point, clusters.get(j).getCenter())); if (distA != 0.0) { for (final CentroidCluster c : clusters) { final double distB = FastMath.abs(distance(point, c.getCenter())); if (distB == 0.0) { sum = Double.POSITIVE_INFINITY; break; } sum += FastMath.pow(distA / distB, 2.0 / (fuzziness - 1.0)); } } double membership; if (sum == 0.0) { membership = 1.0; } else if (sum == Double.POSITIVE_INFINITY) { membership = 0.0; } else { membership = 1.0 / sum; } membershipMatrix[i][j] = membership; if (membershipMatrix[i][j] > maxMembership) { maxMembership = membershipMatrix[i][j]; newCluster = j; } } clusters.get(newCluster).addPoint(point); } } /** * Initialize the membership matrix with random values. */ private void initializeMembershipMatrix() { for (int i = 0; i < points.size(); i++) { for (int j = 0; j < k; j++) { membershipMatrix[i][j] = random.nextDouble(); } membershipMatrix[i] = MathArrays.normalizeArray(membershipMatrix[i], 1.0); } } /** * Calculate the maximum element-by-element change of the membership matrix * for the current iteration. * * @param matrix the membership matrix of the previous iteration * @return the maximum membership matrix change */ private double calculateMaxMembershipChange(final double[][] matrix) { double maxMembership = 0.0; for (int i = 0; i < points.size(); i++) { for (int j = 0; j < clusters.size(); j++) { double v = FastMath.abs(membershipMatrix[i][j] - matrix[i][j]); maxMembership = FastMath.max(v, maxMembership); } } return maxMembership; } /** * Copy the membership matrix into the provided matrix. * * @param matrix the place to store the membership matrix */ private void saveMembershipMatrix(final double[][] matrix) { for (int i = 0; i < points.size(); i++) { System.arraycopy(membershipMatrix[i], 0, matrix[i], 0, clusters.size()); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy