All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.ode.nonstiff.AdamsMoultonFieldIntegrator Maven / Gradle / Ivy

There is a newer version: 2.12.15
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import java.util.Arrays;

import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.NoBracketingException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.linear.Array2DRowFieldMatrix;
import org.apache.commons.math3.linear.FieldMatrixPreservingVisitor;
import org.apache.commons.math3.ode.FieldExpandableODE;
import org.apache.commons.math3.ode.FieldODEState;
import org.apache.commons.math3.ode.FieldODEStateAndDerivative;
import org.apache.commons.math3.util.MathArrays;
import org.apache.commons.math3.util.MathUtils;


/**
 * This class implements implicit Adams-Moulton integrators for Ordinary
 * Differential Equations.
 *
 * 

Adams-Moulton methods (in fact due to Adams alone) are implicit * multistep ODE solvers. This implementation is a variation of the classical * one: it uses adaptive stepsize to implement error control, whereas * classical implementations are fixed step size. The value of state vector * at step n+1 is a simple combination of the value at step n and of the * derivatives at steps n+1, n, n-1 ... Since y'n+1 is needed to * compute yn+1, another method must be used to compute a first * estimate of yn+1, then compute y'n+1, then compute * a final estimate of yn+1 using the following formulas. Depending * on the number k of previous steps one wants to use for computing the next * value, different formulas are available for the final estimate:

*
    *
  • k = 1: yn+1 = yn + h y'n+1
  • *
  • k = 2: yn+1 = yn + h (y'n+1+y'n)/2
  • *
  • k = 3: yn+1 = yn + h (5y'n+1+8y'n-y'n-1)/12
  • *
  • k = 4: yn+1 = yn + h (9y'n+1+19y'n-5y'n-1+y'n-2)/24
  • *
  • ...
  • *
* *

A k-steps Adams-Moulton method is of order k+1.

* *

Implementation details

* *

We define scaled derivatives si(n) at step n as: *

 * s1(n) = h y'n for first derivative
 * s2(n) = h2/2 y''n for second derivative
 * s3(n) = h3/6 y'''n for third derivative
 * ...
 * sk(n) = hk/k! y(k)n for kth derivative
 * 

* *

The definitions above use the classical representation with several previous first * derivatives. Lets define *

 *   qn = [ s1(n-1) s1(n-2) ... s1(n-(k-1)) ]T
 * 
* (we omit the k index in the notation for clarity). With these definitions, * Adams-Moulton methods can be written: *
    *
  • k = 1: yn+1 = yn + s1(n+1)
  • *
  • k = 2: yn+1 = yn + 1/2 s1(n+1) + [ 1/2 ] qn+1
  • *
  • k = 3: yn+1 = yn + 5/12 s1(n+1) + [ 8/12 -1/12 ] qn+1
  • *
  • k = 4: yn+1 = yn + 9/24 s1(n+1) + [ 19/24 -5/24 1/24 ] qn+1
  • *
  • ...
  • *

* *

Instead of using the classical representation with first derivatives only (yn, * s1(n+1) and qn+1), our implementation uses the Nordsieck vector with * higher degrees scaled derivatives all taken at the same step (yn, s1(n) * and rn) where rn is defined as: *

 * rn = [ s2(n), s3(n) ... sk(n) ]T
 * 
* (here again we omit the k index in the notation for clarity) *

* *

Taylor series formulas show that for any index offset i, s1(n-i) can be * computed from s1(n), s2(n) ... sk(n), the formula being exact * for degree k polynomials. *

 * s1(n-i) = s1(n) + ∑j>0 (j+1) (-i)j sj+1(n)
 * 
* The previous formula can be used with several values for i to compute the transform between * classical representation and Nordsieck vector. The transform between rn * and qn resulting from the Taylor series formulas above is: *
 * qn = s1(n) u + P rn
 * 
* where u is the [ 1 1 ... 1 ]T vector and P is the (k-1)×(k-1) matrix built * with the (j+1) (-i)j terms with i being the row number starting from 1 and j being * the column number starting from 1: *
 *        [  -2   3   -4    5  ... ]
 *        [  -4  12  -32   80  ... ]
 *   P =  [  -6  27 -108  405  ... ]
 *        [  -8  48 -256 1280  ... ]
 *        [          ...           ]
 * 

* *

Using the Nordsieck vector has several advantages: *

    *
  • it greatly simplifies step interpolation as the interpolator mainly applies * Taylor series formulas,
  • *
  • it simplifies step changes that occur when discrete events that truncate * the step are triggered,
  • *
  • it allows to extend the methods in order to support adaptive stepsize.
  • *

* *

The predicted Nordsieck vector at step n+1 is computed from the Nordsieck vector at step * n as follows: *

    *
  • Yn+1 = yn + s1(n) + uT rn
  • *
  • S1(n+1) = h f(tn+1, Yn+1)
  • *
  • Rn+1 = (s1(n) - S1(n+1)) P-1 u + P-1 A P rn
  • *
* where A is a rows shifting matrix (the lower left part is an identity matrix): *
 *        [ 0 0   ...  0 0 | 0 ]
 *        [ ---------------+---]
 *        [ 1 0   ...  0 0 | 0 ]
 *    A = [ 0 1   ...  0 0 | 0 ]
 *        [       ...      | 0 ]
 *        [ 0 0   ...  1 0 | 0 ]
 *        [ 0 0   ...  0 1 | 0 ]
 * 
* From this predicted vector, the corrected vector is computed as follows: *
    *
  • yn+1 = yn + S1(n+1) + [ -1 +1 -1 +1 ... ±1 ] rn+1
  • *
  • s1(n+1) = h f(tn+1, yn+1)
  • *
  • rn+1 = Rn+1 + (s1(n+1) - S1(n+1)) P-1 u
  • *
* where the upper case Yn+1, S1(n+1) and Rn+1 represent the * predicted states whereas the lower case yn+1, sn+1 and rn+1 * represent the corrected states.

* *

The P-1u vector and the P-1 A P matrix do not depend on the state, * they only depend on k and therefore are precomputed once for all.

* * @param the type of the field elements * @since 3.6 */ public class AdamsMoultonFieldIntegrator> extends AdamsFieldIntegrator { /** Integrator method name. */ private static final String METHOD_NAME = "Adams-Moulton"; /** * Build an Adams-Moulton integrator with the given order and error control parameters. * @param field field to which the time and state vector elements belong * @param nSteps number of steps of the method excluding the one being computed * @param minStep minimal step (sign is irrelevant, regardless of * integration direction, forward or backward), the last step can * be smaller than this * @param maxStep maximal step (sign is irrelevant, regardless of * integration direction, forward or backward), the last step can * be smaller than this * @param scalAbsoluteTolerance allowed absolute error * @param scalRelativeTolerance allowed relative error * @exception NumberIsTooSmallException if order is 1 or less */ public AdamsMoultonFieldIntegrator(final Field field, final int nSteps, final double minStep, final double maxStep, final double scalAbsoluteTolerance, final double scalRelativeTolerance) throws NumberIsTooSmallException { super(field, METHOD_NAME, nSteps, nSteps + 1, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance); } /** * Build an Adams-Moulton integrator with the given order and error control parameters. * @param field field to which the time and state vector elements belong * @param nSteps number of steps of the method excluding the one being computed * @param minStep minimal step (sign is irrelevant, regardless of * integration direction, forward or backward), the last step can * be smaller than this * @param maxStep maximal step (sign is irrelevant, regardless of * integration direction, forward or backward), the last step can * be smaller than this * @param vecAbsoluteTolerance allowed absolute error * @param vecRelativeTolerance allowed relative error * @exception IllegalArgumentException if order is 1 or less */ public AdamsMoultonFieldIntegrator(final Field field, final int nSteps, final double minStep, final double maxStep, final double[] vecAbsoluteTolerance, final double[] vecRelativeTolerance) throws IllegalArgumentException { super(field, METHOD_NAME, nSteps, nSteps + 1, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance); } /** {@inheritDoc} */ @Override public FieldODEStateAndDerivative integrate(final FieldExpandableODE equations, final FieldODEState initialState, final T finalTime) throws NumberIsTooSmallException, DimensionMismatchException, MaxCountExceededException, NoBracketingException { sanityChecks(initialState, finalTime); final T t0 = initialState.getTime(); final T[] y = equations.getMapper().mapState(initialState); setStepStart(initIntegration(equations, t0, y, finalTime)); final boolean forward = finalTime.subtract(initialState.getTime()).getReal() > 0; // compute the initial Nordsieck vector using the configured starter integrator start(equations, getStepStart(), finalTime); // reuse the step that was chosen by the starter integrator FieldODEStateAndDerivative stepStart = getStepStart(); FieldODEStateAndDerivative stepEnd = AdamsFieldStepInterpolator.taylor(stepStart, stepStart.getTime().add(getStepSize()), getStepSize(), scaled, nordsieck); // main integration loop setIsLastStep(false); do { T[] predictedY = null; final T[] predictedScaled = MathArrays.buildArray(getField(), y.length); Array2DRowFieldMatrix predictedNordsieck = null; T error = getField().getZero().add(10); while (error.subtract(1.0).getReal() >= 0.0) { // predict a first estimate of the state at step end (P in the PECE sequence) predictedY = stepEnd.getState(); // evaluate a first estimate of the derivative (first E in the PECE sequence) final T[] yDot = computeDerivatives(stepEnd.getTime(), predictedY); // update Nordsieck vector for (int j = 0; j < predictedScaled.length; ++j) { predictedScaled[j] = getStepSize().multiply(yDot[j]); } predictedNordsieck = updateHighOrderDerivativesPhase1(nordsieck); updateHighOrderDerivativesPhase2(scaled, predictedScaled, predictedNordsieck); // apply correction (C in the PECE sequence) error = predictedNordsieck.walkInOptimizedOrder(new Corrector(y, predictedScaled, predictedY)); if (error.subtract(1.0).getReal() >= 0.0) { // reject the step and attempt to reduce error by stepsize control final T factor = computeStepGrowShrinkFactor(error); rescale(filterStep(getStepSize().multiply(factor), forward, false)); stepEnd = AdamsFieldStepInterpolator.taylor(getStepStart(), getStepStart().getTime().add(getStepSize()), getStepSize(), scaled, nordsieck); } } // evaluate a final estimate of the derivative (second E in the PECE sequence) final T[] correctedYDot = computeDerivatives(stepEnd.getTime(), predictedY); // update Nordsieck vector final T[] correctedScaled = MathArrays.buildArray(getField(), y.length); for (int j = 0; j < correctedScaled.length; ++j) { correctedScaled[j] = getStepSize().multiply(correctedYDot[j]); } updateHighOrderDerivativesPhase2(predictedScaled, correctedScaled, predictedNordsieck); // discrete events handling stepEnd = new FieldODEStateAndDerivative(stepEnd.getTime(), predictedY, correctedYDot); setStepStart(acceptStep(new AdamsFieldStepInterpolator(getStepSize(), stepEnd, correctedScaled, predictedNordsieck, forward, getStepStart(), stepEnd, equations.getMapper()), finalTime)); scaled = correctedScaled; nordsieck = predictedNordsieck; if (!isLastStep()) { System.arraycopy(predictedY, 0, y, 0, y.length); if (resetOccurred()) { // some events handler has triggered changes that // invalidate the derivatives, we need to restart from scratch start(equations, getStepStart(), finalTime); } // stepsize control for next step final T factor = computeStepGrowShrinkFactor(error); final T scaledH = getStepSize().multiply(factor); final T nextT = getStepStart().getTime().add(scaledH); final boolean nextIsLast = forward ? nextT.subtract(finalTime).getReal() >= 0 : nextT.subtract(finalTime).getReal() <= 0; T hNew = filterStep(scaledH, forward, nextIsLast); final T filteredNextT = getStepStart().getTime().add(hNew); final boolean filteredNextIsLast = forward ? filteredNextT.subtract(finalTime).getReal() >= 0 : filteredNextT.subtract(finalTime).getReal() <= 0; if (filteredNextIsLast) { hNew = finalTime.subtract(getStepStart().getTime()); } rescale(hNew); stepEnd = AdamsFieldStepInterpolator.taylor(getStepStart(), getStepStart().getTime().add(getStepSize()), getStepSize(), scaled, nordsieck); } } while (!isLastStep()); final FieldODEStateAndDerivative finalState = getStepStart(); setStepStart(null); setStepSize(null); return finalState; } /** Corrector for current state in Adams-Moulton method. *

* This visitor implements the Taylor series formula: *

     * Yn+1 = yn + s1(n+1) + [ -1 +1 -1 +1 ... ±1 ] rn+1
     * 
*

*/ private class Corrector implements FieldMatrixPreservingVisitor { /** Previous state. */ private final T[] previous; /** Current scaled first derivative. */ private final T[] scaled; /** Current state before correction. */ private final T[] before; /** Current state after correction. */ private final T[] after; /** Simple constructor. * @param previous previous state * @param scaled current scaled first derivative * @param state state to correct (will be overwritten after visit) */ Corrector(final T[] previous, final T[] scaled, final T[] state) { this.previous = previous; this.scaled = scaled; this.after = state; this.before = state.clone(); } /** {@inheritDoc} */ public void start(int rows, int columns, int startRow, int endRow, int startColumn, int endColumn) { Arrays.fill(after, getField().getZero()); } /** {@inheritDoc} */ public void visit(int row, int column, T value) { if ((row & 0x1) == 0) { after[column] = after[column].subtract(value); } else { after[column] = after[column].add(value); } } /** * End visiting the Nordsieck vector. *

The correction is used to control stepsize. So its amplitude is * considered to be an error, which must be normalized according to * error control settings. If the normalized value is greater than 1, * the correction was too large and the step must be rejected.

* @return the normalized correction, if greater than 1, the step * must be rejected */ public T end() { T error = getField().getZero(); for (int i = 0; i < after.length; ++i) { after[i] = after[i].add(previous[i].add(scaled[i])); if (i < mainSetDimension) { final T yScale = MathUtils.max(previous[i].abs(), after[i].abs()); final T tol = (vecAbsoluteTolerance == null) ? yScale.multiply(scalRelativeTolerance).add(scalAbsoluteTolerance) : yScale.multiply(vecRelativeTolerance[i]).add(vecAbsoluteTolerance[i]); final T ratio = after[i].subtract(before[i]).divide(tol); // (corrected-predicted)/tol error = error.add(ratio.multiply(ratio)); } } return error.divide(mainSetDimension).sqrt(); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy