All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.ode.nonstiff.GillStepInterpolator Maven / Gradle / Ivy

There is a newer version: 2.12.15
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import org.apache.commons.math3.ode.sampling.StepInterpolator;
import org.apache.commons.math3.util.FastMath;

/**
 * This class implements a step interpolator for the Gill fourth
 * order Runge-Kutta integrator.
 *
 * 

This interpolator allows to compute dense output inside the last * step computed. The interpolation equation is consistent with the * integration scheme : *

    *
  • Using reference point at step start:
    * y(tn + θ h) = y (tn) * + θ (h/6) [ (6 - 9 θ + 4 θ2) y'1 * + ( 6 θ - 4 θ2) ((1-1/√2) y'2 + (1+1/√2)) y'3) * + ( - 3 θ + 4 θ2) y'4 * ] *
  • *
  • Using reference point at step start:
    * y(tn + θ h) = y (tn + h) * - (1 - θ) (h/6) [ (1 - 5 θ + 4 θ2) y'1 * + (2 + 2 θ - 4 θ2) ((1-1/√2) y'2 + (1+1/√2)) y'3) * + (1 + θ + 4 θ2) y'4 * ] *
  • *
*

* where θ belongs to [0 ; 1] and where y'1 to y'4 * are the four evaluations of the derivatives already computed during * the step.

* * @see GillIntegrator * @since 1.2 */ class GillStepInterpolator extends RungeKuttaStepInterpolator { /** First Gill coefficient. */ private static final double ONE_MINUS_INV_SQRT_2 = 1 - FastMath.sqrt(0.5); /** Second Gill coefficient. */ private static final double ONE_PLUS_INV_SQRT_2 = 1 + FastMath.sqrt(0.5); /** Serializable version identifier. */ private static final long serialVersionUID = 20111120L; /** Simple constructor. * This constructor builds an instance that is not usable yet, the * {@link * org.apache.commons.math3.ode.sampling.AbstractStepInterpolator#reinitialize} * method should be called before using the instance in order to * initialize the internal arrays. This constructor is used only * in order to delay the initialization in some cases. The {@link * RungeKuttaIntegrator} class uses the prototyping design pattern * to create the step interpolators by cloning an uninitialized model * and later initializing the copy. */ // CHECKSTYLE: stop RedundantModifier // the public modifier here is needed for serialization public GillStepInterpolator() { } // CHECKSTYLE: resume RedundantModifier /** Copy constructor. * @param interpolator interpolator to copy from. The copy is a deep * copy: its arrays are separated from the original arrays of the * instance */ GillStepInterpolator(final GillStepInterpolator interpolator) { super(interpolator); } /** {@inheritDoc} */ @Override protected StepInterpolator doCopy() { return new GillStepInterpolator(this); } /** {@inheritDoc} */ @Override protected void computeInterpolatedStateAndDerivatives(final double theta, final double oneMinusThetaH) { final double twoTheta = 2 * theta; final double fourTheta2 = twoTheta * twoTheta; final double coeffDot1 = theta * (twoTheta - 3) + 1; final double cDot23 = twoTheta * (1 - theta); final double coeffDot2 = cDot23 * ONE_MINUS_INV_SQRT_2; final double coeffDot3 = cDot23 * ONE_PLUS_INV_SQRT_2; final double coeffDot4 = theta * (twoTheta - 1); if ((previousState != null) && (theta <= 0.5)) { final double s = theta * h / 6.0; final double c23 = s * (6 * theta - fourTheta2); final double coeff1 = s * (6 - 9 * theta + fourTheta2); final double coeff2 = c23 * ONE_MINUS_INV_SQRT_2; final double coeff3 = c23 * ONE_PLUS_INV_SQRT_2; final double coeff4 = s * (-3 * theta + fourTheta2); for (int i = 0; i < interpolatedState.length; ++i) { final double yDot1 = yDotK[0][i]; final double yDot2 = yDotK[1][i]; final double yDot3 = yDotK[2][i]; final double yDot4 = yDotK[3][i]; interpolatedState[i] = previousState[i] + coeff1 * yDot1 + coeff2 * yDot2 + coeff3 * yDot3 + coeff4 * yDot4; interpolatedDerivatives[i] = coeffDot1 * yDot1 + coeffDot2 * yDot2 + coeffDot3 * yDot3 + coeffDot4 * yDot4; } } else { final double s = oneMinusThetaH / 6.0; final double c23 = s * (2 + twoTheta - fourTheta2); final double coeff1 = s * (1 - 5 * theta + fourTheta2); final double coeff2 = c23 * ONE_MINUS_INV_SQRT_2; final double coeff3 = c23 * ONE_PLUS_INV_SQRT_2; final double coeff4 = s * (1 + theta + fourTheta2); for (int i = 0; i < interpolatedState.length; ++i) { final double yDot1 = yDotK[0][i]; final double yDot2 = yDotK[1][i]; final double yDot3 = yDotK[2][i]; final double yDot4 = yDotK[3][i]; interpolatedState[i] = currentState[i] - coeff1 * yDot1 - coeff2 * yDot2 - coeff3 * yDot3 - coeff4 * yDot4; interpolatedDerivatives[i] = coeffDot1 * yDot1 + coeffDot2 * yDot2 + coeffDot3 * yDot3 + coeffDot4 * yDot4; } } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy