org.apache.commons.math3.optim.linear.LinearOptimizer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of virtdata-lib-realer Show documentation
Show all versions of virtdata-lib-realer Show documentation
With inspiration from other libraries
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.optim.linear;
import java.util.Collection;
import java.util.Collections;
import org.apache.commons.math3.exception.TooManyIterationsException;
import org.apache.commons.math3.optim.OptimizationData;
import org.apache.commons.math3.optim.PointValuePair;
import org.apache.commons.math3.optim.nonlinear.scalar.MultivariateOptimizer;
/**
* Base class for implementing linear optimizers.
*
* @since 3.1
*/
public abstract class LinearOptimizer
extends MultivariateOptimizer {
/**
* Linear objective function.
*/
private LinearObjectiveFunction function;
/**
* Linear constraints.
*/
private Collection linearConstraints;
/**
* Whether to restrict the variables to non-negative values.
*/
private boolean nonNegative;
/**
* Simple constructor with default settings.
*
*/
protected LinearOptimizer() {
super(null); // No convergence checker.
}
/**
* @return {@code true} if the variables are restricted to non-negative values.
*/
protected boolean isRestrictedToNonNegative() {
return nonNegative;
}
/**
* @return the optimization type.
*/
protected LinearObjectiveFunction getFunction() {
return function;
}
/**
* @return the optimization type.
*/
protected Collection getConstraints() {
return Collections.unmodifiableCollection(linearConstraints);
}
/**
* {@inheritDoc}
*
* @param optData Optimization data. In addition to those documented in
* {@link MultivariateOptimizer#parseOptimizationData(OptimizationData[])
* MultivariateOptimizer}, this method will register the following data:
*
* - {@link LinearObjectiveFunction}
* - {@link LinearConstraintSet}
* - {@link NonNegativeConstraint}
*
* @return {@inheritDoc}
* @throws TooManyIterationsException if the maximal number of
* iterations is exceeded.
*/
@Override
public PointValuePair optimize(OptimizationData... optData)
throws TooManyIterationsException {
// Set up base class and perform computation.
return super.optimize(optData);
}
/**
* Scans the list of (required and optional) optimization data that
* characterize the problem.
*
* @param optData Optimization data.
* The following data will be looked for:
*
* - {@link LinearObjectiveFunction}
* - {@link LinearConstraintSet}
* - {@link NonNegativeConstraint}
*
*/
@Override
protected void parseOptimizationData(OptimizationData... optData) {
// Allow base class to register its own data.
super.parseOptimizationData(optData);
// The existing values (as set by the previous call) are reused if
// not provided in the argument list.
for (OptimizationData data : optData) {
if (data instanceof LinearObjectiveFunction) {
function = (LinearObjectiveFunction) data;
continue;
}
if (data instanceof LinearConstraintSet) {
linearConstraints = ((LinearConstraintSet) data).getConstraints();
continue;
}
if (data instanceof NonNegativeConstraint) {
nonNegative = ((NonNegativeConstraint) data).isRestrictedToNonNegative();
continue;
}
}
}
}