All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.optimization.direct.BaseAbstractMultivariateVectorOptimizer Maven / Gradle / Ivy

There is a newer version: 2.12.15
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.optimization.direct;

import org.apache.commons.math3.util.Incrementor;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.TooManyEvaluationsException;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.analysis.MultivariateVectorFunction;
import org.apache.commons.math3.optimization.OptimizationData;
import org.apache.commons.math3.optimization.InitialGuess;
import org.apache.commons.math3.optimization.Target;
import org.apache.commons.math3.optimization.Weight;
import org.apache.commons.math3.optimization.BaseMultivariateVectorOptimizer;
import org.apache.commons.math3.optimization.ConvergenceChecker;
import org.apache.commons.math3.optimization.PointVectorValuePair;
import org.apache.commons.math3.optimization.SimpleVectorValueChecker;
import org.apache.commons.math3.linear.RealMatrix;

/**
 * Base class for implementing optimizers for multivariate scalar functions.
 * This base class handles the boiler-plate methods associated to thresholds
 * settings, iterations and evaluations counting.
 *
 * @param  the type of the objective function to be optimized
 *
 * @deprecated As of 3.1 (to be removed in 4.0).
 * @since 3.0
 */
@Deprecated
public abstract class BaseAbstractMultivariateVectorOptimizer
    implements BaseMultivariateVectorOptimizer {
    /** Evaluations counter. */
    protected final Incrementor evaluations = new Incrementor();
    /** Convergence checker. */
    private ConvergenceChecker checker;
    /** Target value for the objective functions at optimum. */
    private double[] target;
    /** Weight matrix. */
    private RealMatrix weightMatrix;
    /** Weight for the least squares cost computation.
     * @deprecated
     */
    @Deprecated
    private double[] weight;
    /** Initial guess. */
    private double[] start;
    /** Objective function. */
    private FUNC function;

    /**
     * Simple constructor with default settings.
     * The convergence check is set to a {@link SimpleVectorValueChecker}.
     * @deprecated See {@link SimpleVectorValueChecker#SimpleVectorValueChecker()}
     */
    @Deprecated
    protected BaseAbstractMultivariateVectorOptimizer() {
        this(new SimpleVectorValueChecker());
    }
    /**
     * @param checker Convergence checker.
     */
    protected BaseAbstractMultivariateVectorOptimizer(ConvergenceChecker checker) {
        this.checker = checker;
    }

    /** {@inheritDoc} */
    public int getMaxEvaluations() {
        return evaluations.getMaximalCount();
    }

    /** {@inheritDoc} */
    public int getEvaluations() {
        return evaluations.getCount();
    }

    /** {@inheritDoc} */
    public ConvergenceChecker getConvergenceChecker() {
        return checker;
    }

    /**
     * Compute the objective function value.
     *
     * @param point Point at which the objective function must be evaluated.
     * @return the objective function value at the specified point.
     * @throws TooManyEvaluationsException if the maximal number of evaluations is
     * exceeded.
     */
    protected double[] computeObjectiveValue(double[] point) {
        try {
            evaluations.incrementCount();
        } catch (MaxCountExceededException e) {
            throw new TooManyEvaluationsException(e.getMax());
        }
        return function.value(point);
    }

    /** {@inheritDoc}
     *
     * @deprecated As of 3.1. Please use
     * {@link #optimize(int,MultivariateVectorFunction,OptimizationData[])}
     * instead.
     */
    @Deprecated
    public PointVectorValuePair optimize(int maxEval, FUNC f, double[] t, double[] w,
                                         double[] startPoint) {
        return optimizeInternal(maxEval, f, t, w, startPoint);
    }

    /**
     * Optimize an objective function.
     *
     * @param maxEval Allowed number of evaluations of the objective function.
     * @param f Objective function.
     * @param optData Optimization data. The following data will be looked for:
     * 
    *
  • {@link Target}
  • *
  • {@link Weight}
  • *
  • {@link InitialGuess}
  • *
* @return the point/value pair giving the optimal value of the objective * function. * @throws TooManyEvaluationsException if the maximal number of * evaluations is exceeded. * @throws DimensionMismatchException if the initial guess, target, and weight * arguments have inconsistent dimensions. * * @since 3.1 */ protected PointVectorValuePair optimize(int maxEval, FUNC f, OptimizationData... optData) throws TooManyEvaluationsException, DimensionMismatchException { return optimizeInternal(maxEval, f, optData); } /** * Optimize an objective function. * Optimization is considered to be a weighted least-squares minimization. * The cost function to be minimized is * ∑weighti(objectivei - targeti)2 * * @param f Objective function. * @param t Target value for the objective functions at optimum. * @param w Weights for the least squares cost computation. * @param startPoint Start point for optimization. * @return the point/value pair giving the optimal value for objective * function. * @param maxEval Maximum number of function evaluations. * @throws org.apache.commons.math3.exception.DimensionMismatchException * if the start point dimension is wrong. * @throws org.apache.commons.math3.exception.TooManyEvaluationsException * if the maximal number of evaluations is exceeded. * @throws org.apache.commons.math3.exception.NullArgumentException if * any argument is {@code null}. * @deprecated As of 3.1. Please use * {@link #optimizeInternal(int,MultivariateVectorFunction,OptimizationData[])} * instead. */ @Deprecated protected PointVectorValuePair optimizeInternal(final int maxEval, final FUNC f, final double[] t, final double[] w, final double[] startPoint) { // Checks. if (f == null) { throw new NullArgumentException(); } if (t == null) { throw new NullArgumentException(); } if (w == null) { throw new NullArgumentException(); } if (startPoint == null) { throw new NullArgumentException(); } if (t.length != w.length) { throw new DimensionMismatchException(t.length, w.length); } return optimizeInternal(maxEval, f, new Target(t), new Weight(w), new InitialGuess(startPoint)); } /** * Optimize an objective function. * * @param maxEval Allowed number of evaluations of the objective function. * @param f Objective function. * @param optData Optimization data. The following data will be looked for: *
    *
  • {@link Target}
  • *
  • {@link Weight}
  • *
  • {@link InitialGuess}
  • *
* @return the point/value pair giving the optimal value of the objective * function. * @throws TooManyEvaluationsException if the maximal number of * evaluations is exceeded. * @throws DimensionMismatchException if the initial guess, target, and weight * arguments have inconsistent dimensions. * * @since 3.1 */ protected PointVectorValuePair optimizeInternal(int maxEval, FUNC f, OptimizationData... optData) throws TooManyEvaluationsException, DimensionMismatchException { // Set internal state. evaluations.setMaximalCount(maxEval); evaluations.resetCount(); function = f; // Retrieve other settings. parseOptimizationData(optData); // Check input consistency. checkParameters(); // Allow subclasses to reset their own internal state. setUp(); // Perform computation. return doOptimize(); } /** * Gets the initial values of the optimized parameters. * * @return the initial guess. */ public double[] getStartPoint() { return start.clone(); } /** * Gets the weight matrix of the observations. * * @return the weight matrix. * @since 3.1 */ public RealMatrix getWeight() { return weightMatrix.copy(); } /** * Gets the observed values to be matched by the objective vector * function. * * @return the target values. * @since 3.1 */ public double[] getTarget() { return target.clone(); } /** * Gets the objective vector function. * Note that this access bypasses the evaluation counter. * * @return the objective vector function. * @since 3.1 */ protected FUNC getObjectiveFunction() { return function; } /** * Perform the bulk of the optimization algorithm. * * @return the point/value pair giving the optimal value for the * objective function. */ protected abstract PointVectorValuePair doOptimize(); /** * @return a reference to the {@link #target array}. * @deprecated As of 3.1. */ @Deprecated protected double[] getTargetRef() { return target; } /** * @return a reference to the {@link #weight array}. * @deprecated As of 3.1. */ @Deprecated protected double[] getWeightRef() { return weight; } /** * Method which a subclass must override whenever its internal * state depend on the {@link OptimizationData input} parsed by this base * class. * It will be called after the parsing step performed in the * {@link #optimize(int,MultivariateVectorFunction,OptimizationData[]) * optimize} method and just before {@link #doOptimize()}. * * @since 3.1 */ protected void setUp() { // XXX Temporary code until the new internal data is used everywhere. final int dim = target.length; weight = new double[dim]; for (int i = 0; i < dim; i++) { weight[i] = weightMatrix.getEntry(i, i); } } /** * Scans the list of (required and optional) optimization data that * characterize the problem. * * @param optData Optimization data. The following data will be looked for: *
    *
  • {@link Target}
  • *
  • {@link Weight}
  • *
  • {@link InitialGuess}
  • *
*/ private void parseOptimizationData(OptimizationData... optData) { // The existing values (as set by the previous call) are reused if // not provided in the argument list. for (OptimizationData data : optData) { if (data instanceof Target) { target = ((Target) data).getTarget(); continue; } if (data instanceof Weight) { weightMatrix = ((Weight) data).getWeight(); continue; } if (data instanceof InitialGuess) { start = ((InitialGuess) data).getInitialGuess(); continue; } } } /** * Check parameters consistency. * * @throws DimensionMismatchException if {@link #target} and * {@link #weightMatrix} have inconsistent dimensions. */ private void checkParameters() { if (target.length != weightMatrix.getColumnDimension()) { throw new DimensionMismatchException(target.length, weightMatrix.getColumnDimension()); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy