org.apache.commons.math3.optimization.direct.SimplexOptimizer Maven / Gradle / Ivy
Show all versions of virtdata-lib-realer Show documentation
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.optimization.direct;
import java.util.Comparator;
import org.apache.commons.math3.analysis.MultivariateFunction;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.optimization.GoalType;
import org.apache.commons.math3.optimization.ConvergenceChecker;
import org.apache.commons.math3.optimization.PointValuePair;
import org.apache.commons.math3.optimization.SimpleValueChecker;
import org.apache.commons.math3.optimization.MultivariateOptimizer;
import org.apache.commons.math3.optimization.OptimizationData;
/**
* This class implements simplex-based direct search optimization.
*
*
* Direct search methods only use objective function values, they do
* not need derivatives and don't either try to compute approximation
* of the derivatives. According to a 1996 paper by Margaret H. Wright
* (Direct
* Search Methods: Once Scorned, Now Respectable), they are used
* when either the computation of the derivative is impossible (noisy
* functions, unpredictable discontinuities) or difficult (complexity,
* computation cost). In the first cases, rather than an optimum, a
* not too bad point is desired. In the latter cases, an
* optimum is desired but cannot be reasonably found. In all cases
* direct search methods can be useful.
*
*
* Simplex-based direct search methods are based on comparison of
* the objective function values at the vertices of a simplex (which is a
* set of n+1 points in dimension n) that is updated by the algorithms
* steps.
*
*
* The {@link #setSimplex(AbstractSimplex) setSimplex} method must
* be called prior to calling the {@code optimize} method.
*
*
* Each call to {@link #optimize(int,MultivariateFunction,GoalType,double[])
* optimize} will re-use the start configuration of the current simplex and
* move it such that its first vertex is at the provided start point of the
* optimization. If the {@code optimize} method is called to solve a different
* problem and the number of parameters change, the simplex must be
* re-initialized to one with the appropriate dimensions.
*
*
* Convergence is checked by providing the worst points of
* previous and current simplex to the convergence checker, not the best
* ones.
*
*
* This simplex optimizer implementation does not directly support constrained
* optimization with simple bounds, so for such optimizations, either a more
* dedicated method must be used like {@link CMAESOptimizer} or {@link
* BOBYQAOptimizer}, or the optimized method must be wrapped in an adapter like
* {@link MultivariateFunctionMappingAdapter} or {@link
* MultivariateFunctionPenaltyAdapter}.
*
*
* @see AbstractSimplex
* @see MultivariateFunctionMappingAdapter
* @see MultivariateFunctionPenaltyAdapter
* @see CMAESOptimizer
* @see BOBYQAOptimizer
* @deprecated As of 3.1 (to be removed in 4.0).
* @since 3.0
*/
@SuppressWarnings("boxing") // deprecated anyway
@Deprecated
public class SimplexOptimizer
extends BaseAbstractMultivariateOptimizer
implements MultivariateOptimizer {
/** Simplex. */
private AbstractSimplex simplex;
/**
* Constructor using a default {@link SimpleValueChecker convergence
* checker}.
* @deprecated See {@link SimpleValueChecker#SimpleValueChecker()}
*/
@Deprecated
public SimplexOptimizer() {
this(new SimpleValueChecker());
}
/**
* @param checker Convergence checker.
*/
public SimplexOptimizer(ConvergenceChecker checker) {
super(checker);
}
/**
* @param rel Relative threshold.
* @param abs Absolute threshold.
*/
public SimplexOptimizer(double rel, double abs) {
this(new SimpleValueChecker(rel, abs));
}
/**
* Set the simplex algorithm.
*
* @param simplex Simplex.
* @deprecated As of 3.1. The initial simplex can now be passed as an
* argument of the {@link #optimize(int,MultivariateFunction,GoalType,OptimizationData[])}
* method.
*/
@Deprecated
public void setSimplex(AbstractSimplex simplex) {
parseOptimizationData(simplex);
}
/**
* Optimize an objective function.
*
* @param maxEval Allowed number of evaluations of the objective function.
* @param f Objective function.
* @param goalType Optimization type.
* @param optData Optimization data. The following data will be looked for:
*
* - {@link org.apache.commons.math3.optimization.InitialGuess InitialGuess}
* - {@link AbstractSimplex}
*
* @return the point/value pair giving the optimal value for objective
* function.
*/
@Override
protected PointValuePair optimizeInternal(int maxEval, MultivariateFunction f,
GoalType goalType,
OptimizationData... optData) {
// Scan "optData" for the input specific to this optimizer.
parseOptimizationData(optData);
// The parent's method will retrieve the common parameters from
// "optData" and call "doOptimize".
return super.optimizeInternal(maxEval, f, goalType, optData);
}
/**
* Scans the list of (required and optional) optimization data that
* characterize the problem.
*
* @param optData Optimization data. The following data will be looked for:
*
* - {@link AbstractSimplex}
*
*/
private void parseOptimizationData(OptimizationData... optData) {
// The existing values (as set by the previous call) are reused if
// not provided in the argument list.
for (OptimizationData data : optData) {
if (data instanceof AbstractSimplex) {
simplex = (AbstractSimplex) data;
continue;
}
}
}
/** {@inheritDoc} */
@Override
protected PointValuePair doOptimize() {
if (simplex == null) {
throw new NullArgumentException();
}
// Indirect call to "computeObjectiveValue" in order to update the
// evaluations counter.
final MultivariateFunction evalFunc
= new MultivariateFunction() {
/** {@inheritDoc} */
public double value(double[] point) {
return computeObjectiveValue(point);
}
};
final boolean isMinim = getGoalType() == GoalType.MINIMIZE;
final Comparator comparator
= new Comparator() {
/** {@inheritDoc} */
public int compare(final PointValuePair o1,
final PointValuePair o2) {
final double v1 = o1.getValue();
final double v2 = o2.getValue();
return isMinim ? Double.compare(v1, v2) : Double.compare(v2, v1);
}
};
// Initialize search.
simplex.build(getStartPoint());
simplex.evaluate(evalFunc, comparator);
PointValuePair[] previous = null;
int iteration = 0;
final ConvergenceChecker checker = getConvergenceChecker();
while (true) {
if (iteration > 0) {
boolean converged = true;
for (int i = 0; i < simplex.getSize(); i++) {
PointValuePair prev = previous[i];
converged = converged &&
checker.converged(iteration, prev, simplex.getPoint(i));
}
if (converged) {
// We have found an optimum.
return simplex.getPoint(0);
}
}
// We still need to search.
previous = simplex.getPoints();
simplex.iterate(evalFunc, comparator);
++iteration;
}
}
}