All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.github.kristofa.brave.CountingSampler Maven / Gradle / Ivy

package com.github.kristofa.brave;

import java.util.BitSet;
import java.util.Random;

import static zipkin.internal.Util.checkArgument;

/**
 * This sampler is appropriate for low-traffic instrumentation (ex servers that each receive <100K
 * requests), or those who do not provision random trace ids. It not appropriate for collectors as
 * the sampling decision isn't idempotent (consistent based on trace id).
 *
 * 

Implementation

* *

This initializes a random bitset of size 100 (corresponding to 1% granularity). This means * that it is accurate in units of 100 traces. At runtime, this loops through the bitset, returning * the value according to a counter. */ public final class CountingSampler extends Sampler { /** * @param rate 0 means never sample, 1 means always sample. Otherwise minimum sample rate is 0.01, * or 1% of traces */ public static Sampler create(final float rate) { if (rate == 0) return NEVER_SAMPLE; if (rate == 1.0) return ALWAYS_SAMPLE; checkArgument(rate >= 0.01f && rate < 1, "rate should be between 0.01 and 1: was %s", rate); return new CountingSampler(rate); } private int i; // guarded by this private final BitSet sampleDecisions; /** Fills a bitset with decisions according to the supplied rate. */ CountingSampler(float rate) { int outOf100 = (int) (rate * 100.0f); this.sampleDecisions = randomBitSet(100, outOf100, new Random()); } /** loops over the pre-canned decisions, resetting to zero when it gets to the end. */ @Override public synchronized boolean isSampled(long traceIdIgnored) { boolean result = sampleDecisions.get(i++); if (i == 100) i = 0; return result; } @Override public String toString() { return "CountingSampler()"; } /** * Reservoir sampling algorithm borrowed from Stack Overflow. * * http://stackoverflow.com/questions/12817946/generate-a-random-bitset-with-n-1s */ static BitSet randomBitSet(int size, int cardinality, Random rnd) { BitSet result = new BitSet(size); int[] chosen = new int[cardinality]; int i; for (i = 0; i < cardinality; ++i) { chosen[i] = i; result.set(i); } for (; i < size; ++i) { int j = rnd.nextInt(i + 1); if (j < cardinality) { result.clear(chosen[j]); result.set(i); chosen[j] = i; } } return result; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy