
org.apache.hadoop.hbase.spark.JavaHBaseContext.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.hbase.spark
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.hbase.TableName
import org.apache.hadoop.classification.InterfaceAudience
import org.apache.hadoop.hbase.client._
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.spark.api.java.function.{FlatMapFunction, Function, VoidFunction}
import org.apache.spark.api.java.{JavaRDD, JavaSparkContext}
import scala.collection.JavaConverters._
import scala.reflect.ClassTag
import scala.annotation.meta.param
/**
* This is the Java Wrapper over HBaseContext which is written in
* Scala. This class will be used by developers that want to
* work with Spark or Spark Streaming in Java
*
* @param jsc This is the JavaSparkContext that we will wrap
* @param config This is the config information to out HBase cluster
*/
@InterfaceAudience.Public
class JavaHBaseContext(@(transient @param) jsc: JavaSparkContext,
@(transient @param) config: Configuration) extends Serializable {
val hbaseContext = new HBaseContext(jsc.sc, config)
/**
* A simple enrichment of the traditional Spark javaRdd foreachPartition.
* This function differs from the original in that it offers the
* developer access to a already connected Connection object
*
* Note: Do not close the Connection object. All Connection
* management is handled outside this method
*
* @param javaRdd Original javaRdd with data to iterate over
* @param f Function to be given a iterator to iterate through
* the RDD values and a Connection object to interact
* with HBase
*/
def foreachPartition[T](javaRdd: JavaRDD[T],
f: VoidFunction[(java.util.Iterator[T], Connection)]) = {
hbaseContext.foreachPartition(javaRdd.rdd,
(it: Iterator[T], conn: Connection) => {
f.call((it.asJava, conn))
})
}
/**
* A simple enrichment of the traditional Spark JavaRDD mapPartition.
* This function differs from the original in that it offers the
* developer access to a already connected Connection object
*
* Note: Do not close the Connection object. All Connection
* management is handled outside this method
*
* Note: Make sure to partition correctly to avoid memory issue when
* getting data from HBase
*
* @param javaRdd Original JavaRdd with data to iterate over
* @param f Function to be given a iterator to iterate through
* the RDD values and a Connection object to interact
* with HBase
* @return Returns a new RDD generated by the user definition
* function just like normal mapPartition
*/
def mapPartitions[T, R](javaRdd: JavaRDD[T],
f: FlatMapFunction[(java.util.Iterator[T],
Connection), R]): JavaRDD[R] = {
def fn = (it: Iterator[T], conn: Connection) =>
f.call((it.asJava, conn)).asScala
JavaRDD.fromRDD(hbaseContext.mapPartitions(javaRdd.rdd,
(iterator: Iterator[T], connection: Connection) =>
fn(iterator, connection))(fakeClassTag[R]))(fakeClassTag[R])
}
/**
* A simple abstraction over the HBaseContext.foreachPartition method.
*
* It allow addition support for a user to take JavaRDD
* and generate puts and send them to HBase.
* The complexity of managing the Connection is
* removed from the developer
*
* @param javaRdd Original JavaRDD with data to iterate over
* @param tableName The name of the table to put into
* @param f Function to convert a value in the JavaRDD
* to a HBase Put
*/
def bulkPut[T](javaRdd: JavaRDD[T],
tableName: TableName,
f: Function[(T), Put]) {
hbaseContext.bulkPut(javaRdd.rdd, tableName, (t: T) => f.call(t))
}
/**
* A simple abstraction over the HBaseContext.foreachPartition method.
*
* It allow addition support for a user to take a JavaRDD and
* generate delete and send them to HBase.
*
* The complexity of managing the Connection is
* removed from the developer
*
* @param javaRdd Original JavaRDD with data to iterate over
* @param tableName The name of the table to delete from
* @param f Function to convert a value in the JavaRDD to a
* HBase Deletes
* @param batchSize The number of deletes to batch before sending to HBase
*/
def bulkDelete[T](javaRdd: JavaRDD[T], tableName: TableName,
f: Function[T, Delete], batchSize: Integer) {
hbaseContext.bulkDelete(javaRdd.rdd, tableName, (t: T) => f.call(t), batchSize)
}
/**
* A simple abstraction over the HBaseContext.mapPartition method.
*
* It allow addition support for a user to take a JavaRDD and generates a
* new RDD based on Gets and the results they bring back from HBase
*
* @param tableName The name of the table to get from
* @param batchSize batch size of how many gets to retrieve in a single fetch
* @param javaRdd Original JavaRDD with data to iterate over
* @param makeGet Function to convert a value in the JavaRDD to a
* HBase Get
* @param convertResult This will convert the HBase Result object to
* what ever the user wants to put in the resulting
* JavaRDD
* @return New JavaRDD that is created by the Get to HBase
*/
def bulkGet[T, U](tableName: TableName,
batchSize: Integer,
javaRdd: JavaRDD[T],
makeGet: Function[T, Get],
convertResult: Function[Result, U]): JavaRDD[U] = {
JavaRDD.fromRDD(hbaseContext.bulkGet[T, U](tableName,
batchSize,
javaRdd.rdd,
(t: T) => makeGet.call(t),
(r: Result) => {
convertResult.call(r)
})(fakeClassTag[U]))(fakeClassTag[U])
}
/**
* This function will use the native HBase TableInputFormat with the
* given scan object to generate a new JavaRDD
*
* @param tableName The name of the table to scan
* @param scans The HBase scan object to use to read data from HBase
* @param f Function to convert a Result object from HBase into
* What the user wants in the final generated JavaRDD
* @return New JavaRDD with results from scan
*/
def hbaseRDD[U](tableName: TableName,
scans: Scan,
f: Function[(ImmutableBytesWritable, Result), U]):
JavaRDD[U] = {
JavaRDD.fromRDD(
hbaseContext.hbaseRDD[U](tableName,
scans,
(v: (ImmutableBytesWritable, Result)) =>
f.call(v._1 -> v._2))(fakeClassTag[U]))(fakeClassTag[U])
}
/**
* A overloaded version of HBaseContext hbaseRDD that define the
* type of the resulting JavaRDD
*
* @param tableName The name of the table to scan
* @param scans The HBase scan object to use to read data from HBase
* @return New JavaRDD with results from scan
*/
def hbaseRDD(tableName: TableName,
scans: Scan):
JavaRDD[(ImmutableBytesWritable, Result)] = {
JavaRDD.fromRDD(hbaseContext.hbaseRDD(tableName, scans))
}
/**
* Produces a ClassTag[T], which is actually just a casted ClassTag[AnyRef].
*
* This method is used to keep ClassTags out of the external Java API, as the Java compiler
* cannot produce them automatically. While this ClassTag-faking does please the compiler,
* it can cause problems at runtime if the Scala API relies on ClassTags for correctness.
*
* Often, though, a ClassTag[AnyRef] will not lead to incorrect behavior,
* just worse performance or security issues.
* For instance, an Array[AnyRef] can hold any type T,
* but may lose primitive
* specialization.
*/
private[spark]
def fakeClassTag[T]: ClassTag[T] = ClassTag.AnyRef.asInstanceOf[ClassTag[T]]
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy