it.unibo.alchemist.model.timedistributions.WeibullTime.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of alchemist-implementationbase Show documentation
Show all versions of alchemist-implementationbase Show documentation
Abstract, incarnation independent implementations of the Alchemist's interfaces. Provides support for those who want to write incarnations.
package it.unibo.alchemist.model.timedistributions
import it.unibo.alchemist.model.Environment
import it.unibo.alchemist.model.Node
import it.unibo.alchemist.model.Time
import it.unibo.alchemist.model.times.DoubleTime
import org.apache.commons.math3.distribution.WeibullDistribution
import org.apache.commons.math3.random.RandomGenerator
import org.apache.commons.math3.special.Gamma
import org.apache.commons.math3.util.FastMath
/**
* Weibull distributed events.
*
* @param concentration type
*/
open class WeibullTime private constructor(
private val randomGenerator: RandomGenerator,
private val backingDistribution: WeibullDistribution,
private val offset: Double,
start: Time,
) : AbstractDistribution(start) {
/**
* @param mean
* mean for this distribution
* @param deviation
* standard deviation for this distribution
* @param random
* {@link RandomGenerator} used internally
*/
constructor(mean: Double, deviation: Double, random: RandomGenerator) : this(
mean,
deviation,
DoubleTime(random.nextDouble() * mean),
random,
)
/**
* @param mean
* mean for this distribution
* @param deviation
* standard deviation for this distribution
* @param start
* initial time
* @param random
* {@link RandomGenerator} used internally
*/
constructor(mean: Double, deviation: Double, start: Time, random: RandomGenerator) : this(
random,
weibullFromMean(mean, deviation, random),
0.0,
start,
)
/**
* @param shapeParameter
* shape parameter for this distribution
* @param scaleParameter
* shape parameter for this distribution
* @param offsetParameter
* minimum possible time interval for this distribution
* @param start
* initial time
* @param random
* {@link RandomGenerator} used internally
*/
constructor(
shapeParameter: Double,
scaleParameter: Double,
offsetParameter: Double,
start: Time,
random: RandomGenerator,
) : this(
random,
WeibullDistribution(random, shapeParameter, scaleParameter, PREFERRED_INVERSE_CUMULATIVE_ACCURACY),
offsetParameter,
start,
)
override fun updateStatus(currentTime: Time, executed: Boolean, param: Double, environment: Environment?) {
if (executed) {
this.setNextOccurrence(currentTime.plus(DoubleTime(1.0 / this.genSample())))
}
}
/**
* @return a sample from the distribution
*/
protected fun genSample(): Double =
backingDistribution.inverseCumulativeProbability(randomGenerator.nextDouble()) + this.offset
/**
* @return the mean for this distribution.
*/
val mean: Double
get() = backingDistribution.numericalMean + this.offset
/**
* @return the standard deviation for this distribution.
*/
val deviation: Double
get() = FastMath.sqrt(backingDistribution.numericalVariance)
override fun getRate(): Double = this.mean
override fun cloneOnNewNode(
destination: Node,
currentTime: Time,
): WeibullTime = WeibullTime(
this.randomGenerator,
this.backingDistribution,
this.offset,
currentTime,
)
companion object {
private const val PREFERRED_INVERSE_CUMULATIVE_ACCURACY = 1.0E-9
/**
* Generates a {@link WeibullDistribution} given its mean and standard deviation.
*
* @param mean
* the mean
* @param deviation
* the standard deviation
* @param random
* the random generator
* @return a new {@link WeibullDistribution}
*/
protected fun weibullFromMean(mean: Double, deviation: Double, random: RandomGenerator?): WeibullDistribution {
val t = FastMath.log(deviation * deviation / (mean * mean) + 1.0)
var kmin = 0.0
var kmax: Double
kmax = 1.0
while (Gamma.logGamma(1.0 + 2.0 * kmax) - 2.0 * Gamma.logGamma(1.0 + kmax) < t) {
kmin = kmax
kmax *= 2.0
}
var k: Double
k = (kmin + kmax) / 2.0
while (kmin < k && k < kmax) {
if (Gamma.logGamma(1.0 + 2.0 * k) - 2.0 * Gamma.logGamma(1.0 + k) < t) {
kmin = k
} else {
kmax = k
}
k = (kmin + kmax) / 2.0
}
val shapeParameter = 1.0 / k
val scaleParameter = mean / FastMath.exp(Gamma.logGamma(1.0 + k))
return WeibullDistribution(random, shapeParameter, scaleParameter, PREFERRED_INVERSE_CUMULATIVE_ACCURACY)
}
}
}