All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unibo.alchemist.model.deployments.AbstractCloseTo.kt Maven / Gradle / Ivy

/*
 * Copyright (C) 2010-2019, Danilo Pianini and contributors listed in the main project's alchemist/build.gradle file.
 *
 * This file is part of Alchemist, and is distributed under the terms of the
 * GNU General Public License, with a linking exception,
 * as described in the file LICENSE in the Alchemist distribution's top directory.
 */

package it.unibo.alchemist.model.deployments

import it.unibo.alchemist.model.Deployment
import it.unibo.alchemist.model.Environment
import it.unibo.alchemist.model.Position
import org.apache.commons.math3.distribution.MixtureMultivariateNormalDistribution
import org.apache.commons.math3.distribution.MultivariateNormalDistribution
import org.apache.commons.math3.random.RandomGenerator
import org.apache.commons.math3.util.Pair
import java.util.stream.Stream

/**
 * A generic [Deployment] that displaces a certain [nodeCount] of nodes in the proximity of a number of [sources].
 * Higher [variance] implies higher dispersion.
 * Subclasses must identify the [sources]
 */
abstract class AbstractCloseTo> constructor(
    protected val randomGenerator: RandomGenerator,
    protected val environment: Environment,
    protected val nodeCount: Int,
    protected val variance: Double,
) : Deployment

{ init { require(nodeCount >= 0) { "The node count must be positive or zero: $nodeCount" } require(variance >= 0) { "The node count must be positive or zero: $nodeCount" } } private var deployment: Collection

? = null protected open fun covarianceMatrix(dimensions: Int): Array = Array(dimensions) { index -> DoubleArray(dimensions) { if (it == index) variance else 0.0 } } protected abstract val sources: Sequence final override fun stream(): Stream

= ( deployment ?: sources .map { MultivariateNormalDistribution(randomGenerator, it, covarianceMatrix(it.size)) } .map { Pair(1.0, it) } .toList() .let { MixtureMultivariateNormalDistribution(randomGenerator, it) } .let { distribution -> (0 until nodeCount).map { environment.makePosition(*distribution.sample().toTypedArray()) } }.also { deployment = it } ).stream() }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy