it.unibo.alchemist.model.deployments.AbstractCloseTo.kt Maven / Gradle / Ivy
/*
* Copyright (C) 2010-2019, Danilo Pianini and contributors listed in the main project's alchemist/build.gradle file.
*
* This file is part of Alchemist, and is distributed under the terms of the
* GNU General Public License, with a linking exception,
* as described in the file LICENSE in the Alchemist distribution's top directory.
*/
package it.unibo.alchemist.model.deployments
import it.unibo.alchemist.model.Deployment
import it.unibo.alchemist.model.Environment
import it.unibo.alchemist.model.Position
import org.apache.commons.math3.distribution.MixtureMultivariateNormalDistribution
import org.apache.commons.math3.distribution.MultivariateNormalDistribution
import org.apache.commons.math3.random.RandomGenerator
import org.apache.commons.math3.util.Pair
import java.util.stream.Stream
/**
* A generic [Deployment] that displaces a certain [nodeCount] of nodes in the proximity of a number of [sources].
* Higher [variance] implies higher dispersion.
* Subclasses must identify the [sources]
*/
abstract class AbstractCloseTo> constructor(
protected val randomGenerator: RandomGenerator,
protected val environment: Environment,
protected val nodeCount: Int,
protected val variance: Double,
) : Deployment {
init {
require(nodeCount >= 0) { "The node count must be positive or zero: $nodeCount" }
require(variance >= 0) { "The node count must be positive or zero: $nodeCount" }
}
private var deployment: Collection
? = null
protected open fun covarianceMatrix(dimensions: Int): Array = Array(dimensions) { index ->
DoubleArray(dimensions) { if (it == index) variance else 0.0 }
}
protected abstract val sources: Sequence
final override fun stream(): Stream = (
deployment ?: sources
.map { MultivariateNormalDistribution(randomGenerator, it, covarianceMatrix(it.size)) }
.map { Pair(1.0, it) }
.toList()
.let { MixtureMultivariateNormalDistribution(randomGenerator, it) }
.let { distribution ->
(0 until nodeCount).map { environment.makePosition(*distribution.sample().toTypedArray()) }
}.also { deployment = it }
).stream()
}