src.it.unimi.dsi.bits.HuTuckerTransformationStrategy Maven / Gradle / Ivy
package it.unimi.dsi.bits;
/*
* DSI utilities
*
* Copyright (C) 2007-2017 Sebastiano Vigna
*
* This library is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
* for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, see .
*
*/
import it.unimi.dsi.compression.HuTuckerCodec;
import it.unimi.dsi.fastutil.chars.Char2IntMap;
import it.unimi.dsi.fastutil.chars.Char2IntOpenHashMap;
import java.util.Iterator;
/** A transformation strategy mapping strings to their {@linkplain HuTuckerCodec Hu-Tucker encoding}. The
* encoding is guaranteed to preserve lexicographical ordering.
*/
public class HuTuckerTransformationStrategy extends PrefixCoderTransformationStrategy {
private static final long serialVersionUID = 1;
/** Creates a Hu-Tucker transformation strategy for the character sequences returned by the given iterable. The
* strategy will map a string to its Hu-Tucker encoding.
*
* @param iterable an iterable object returning character sequences.
* @param prefixFree if true, the resulting set of binary words will be prefix free.
*/
public HuTuckerTransformationStrategy(final Iterable extends CharSequence> iterable, final boolean prefixFree) {
this(getCoder(iterable, prefixFree), prefixFree);
}
protected HuTuckerTransformationStrategy(PrefixCoderTransformationStrategy huTuckerTransformationStrategy) {
super(huTuckerTransformationStrategy);
}
protected HuTuckerTransformationStrategy(Object[] a, boolean prefixFree) {
super((BitVector[])a[0], (Char2IntOpenHashMap)a[1], prefixFree);
}
private static Object[] getCoder(final Iterable extends CharSequence> iterable, boolean prefixFree) {
// First of all, we gather frequencies for all Unicode characters
long[] frequency = new long[Character.MAX_VALUE + 1];
int maxWordLength = 0;
CharSequence s;
int n = 0;
for(Iterator extends CharSequence> i = iterable.iterator(); i.hasNext();) {
s = i.next();
maxWordLength = Math.max(s.length(), maxWordLength);
for(int j = s.length(); j-- != 0;) frequency[s.charAt(j)]++;
n++;
}
// Then, we compute the number of actually used characters. We count from the start the stop character.
int count = prefixFree ? 1 : 0;
for(int i = frequency.length; i-- != 0;) if (frequency[i] != 0) count++;
/* Now we remap used characters in f, building at the same time the map from characters to symbols (except for the stop character). */
long[] packedFrequency = new long[count];
final Char2IntMap char2symbol = new Char2IntOpenHashMap(count);
for(int i = frequency.length, k = count; i-- != 0;) {
if (frequency[i] != 0) {
packedFrequency[--k] = frequency[i];
char2symbol.put((char)i, k);
}
}
if (prefixFree) packedFrequency[0] = n; // The stop character appears once in each string.
// We now build the coder used to code the strings
return new Object[] { new HuTuckerCodec(packedFrequency).coder().codeWords(), char2symbol };
}
@Override
public PrefixCoderTransformationStrategy copy() {
return new HuTuckerTransformationStrategy(this);
}
}