All Downloads are FREE. Search and download functionalities are using the official Maven repository.

src.it.unimi.dsi.bits.Fast Maven / Gradle / Ivy

Go to download

The DSI utilities are a mishmash of classes accumulated during the last twenty years in projects developed at the DSI (Dipartimento di Scienze dell'Informazione, i.e., Information Sciences Department), now DI (Dipartimento di Informatica, i.e., Informatics Department), of the Universita` degli Studi di Milano.

There is a newer version: 2.7.3
Show newest version
package it.unimi.dsi.bits;

/*
 * DSI utilities
 *
 * Copyright (C) 2007-2019 Sebastiano Vigna
 *
 *  This library is free software; you can redistribute it and/or modify it
 *  under the terms of the GNU Lesser General Public License as published by the Free
 *  Software Foundation; either version 3 of the License, or (at your option)
 *  any later version.
 *
 *  This library is distributed in the hope that it will be useful, but
 *  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 *  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License
 *  for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public License
 *  along with this program; if not, see .
 *
 */


/** All-purpose optimised bit-fiddling static-method container class.
  *
  * 

This class used to contain a large number of bits hacks. Intrinsification of methods * such as {@link Long#bitCount(long)}, {@link Long#numberOfTrailingZeros(long)}, etc. using * SSE instructions has made such hacks obsolete. * *

The main highlight is now a new algorithm for {@linkplain #select(long, int) selection} that is twice as * fast as the one previously implemented, but that will behave impredictably if there is no bit with the requested rank; the * algorithm is based on the one presented * by Sebastiano Vigna in “Broadword Implementation of Rank/Select Queries”, * Proc. of the 7th International Workshop on Experimental Algorithms, WEA 2008, * number 5038 in Lecture Notes in Computer Science, pages 154−168. Springer–Verlag, 2008, but it * has been improved with ideas from Simon Gog's SDSL library. * * @author Sebastiano Vigna * @since 0.1 */ public final class Fast { private Fast() {} public static final long ONES_STEP_4 = 0x1111111111111111L; public static final long ONES_STEP_8 = 0x0101010101010101L; public static final long MSBS_STEP_8 = 0x80L * ONES_STEP_8; @Deprecated public static final long INCR_STEP_8 = 0x80L << 56 | 0x40L << 48 | 0x20L << 40 | 0x10L << 32 | 0x8L << 24 | 0x4L << 16 | 0x2L << 8 | 0x1; /** Precomputed least significant bits for bytes (-1 for 0). */ public static final int[] BYTELSB = { -1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 }; /** Precomputed most significant bits for bytes (-1 for 0). */ public static final int[] BYTEMSB = { -1, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7 }; /** A precomputed table containing in position 256i + j the position of the i-th one (0 ≤ j < 8) in the binary representation of i * (0 ≤ i < 256), or -1 if no such bit exists. */ public static final byte[] selectInByte = { -1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, -1, -1, -1, 1, -1, 2, 2, 1, -1, 3, 3, 1, 3, 2, 2, 1, -1, 4, 4, 1, 4, 2, 2, 1, 4, 3, 3, 1, 3, 2, 2, 1, -1, 5, 5, 1, 5, 2, 2, 1, 5, 3, 3, 1, 3, 2, 2, 1, 5, 4, 4, 1, 4, 2, 2, 1, 4, 3, 3, 1, 3, 2, 2, 1, -1, 6, 6, 1, 6, 2, 2, 1, 6, 3, 3, 1, 3, 2, 2, 1, 6, 4, 4, 1, 4, 2, 2, 1, 4, 3, 3, 1, 3, 2, 2, 1, 6, 5, 5, 1, 5, 2, 2, 1, 5, 3, 3, 1, 3, 2, 2, 1, 5, 4, 4, 1, 4, 2, 2, 1, 4, 3, 3, 1, 3, 2, 2, 1, -1, 7, 7, 1, 7, 2, 2, 1, 7, 3, 3, 1, 3, 2, 2, 1, 7, 4, 4, 1, 4, 2, 2, 1, 4, 3, 3, 1, 3, 2, 2, 1, 7, 5, 5, 1, 5, 2, 2, 1, 5, 3, 3, 1, 3, 2, 2, 1, 5, 4, 4, 1, 4, 2, 2, 1, 4, 3, 3, 1, 3, 2, 2, 1, 7, 6, 6, 1, 6, 2, 2, 1, 6, 3, 3, 1, 3, 2, 2, 1, 6, 4, 4, 1, 4, 2, 2, 1, 4, 3, 3, 1, 3, 2, 2, 1, 6, 5, 5, 1, 5, 2, 2, 1, 5, 3, 3, 1, 3, 2, 2, 1, 5, 4, 4, 1, 4, 2, 2, 1, 4, 3, 3, 1, 3, 2, 2, 1, -1, -1, -1, -1, -1, -1, -1, 2, -1, -1, -1, 3, -1, 3, 3, 2, -1, -1, -1, 4, -1, 4, 4, 2, -1, 4, 4, 3, 4, 3, 3, 2, -1, -1, -1, 5, -1, 5, 5, 2, -1, 5, 5, 3, 5, 3, 3, 2, -1, 5, 5, 4, 5, 4, 4, 2, 5, 4, 4, 3, 4, 3, 3, 2, -1, -1, -1, 6, -1, 6, 6, 2, -1, 6, 6, 3, 6, 3, 3, 2, -1, 6, 6, 4, 6, 4, 4, 2, 6, 4, 4, 3, 4, 3, 3, 2, -1, 6, 6, 5, 6, 5, 5, 2, 6, 5, 5, 3, 5, 3, 3, 2, 6, 5, 5, 4, 5, 4, 4, 2, 5, 4, 4, 3, 4, 3, 3, 2, -1, -1, -1, 7, -1, 7, 7, 2, -1, 7, 7, 3, 7, 3, 3, 2, -1, 7, 7, 4, 7, 4, 4, 2, 7, 4, 4, 3, 4, 3, 3, 2, -1, 7, 7, 5, 7, 5, 5, 2, 7, 5, 5, 3, 5, 3, 3, 2, 7, 5, 5, 4, 5, 4, 4, 2, 5, 4, 4, 3, 4, 3, 3, 2, -1, 7, 7, 6, 7, 6, 6, 2, 7, 6, 6, 3, 6, 3, 3, 2, 7, 6, 6, 4, 6, 4, 4, 2, 6, 4, 4, 3, 4, 3, 3, 2, 7, 6, 6, 5, 6, 5, 5, 2, 6, 5, 5, 3, 5, 3, 3, 2, 6, 5, 5, 4, 5, 4, 4, 2, 5, 4, 4, 3, 4, 3, 3, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4, -1, -1, -1, 4, -1, 4, 4, 3, -1, -1, -1, -1, -1, -1, -1, 5, -1, -1, -1, 5, -1, 5, 5, 3, -1, -1, -1, 5, -1, 5, 5, 4, -1, 5, 5, 4, 5, 4, 4, 3, -1, -1, -1, -1, -1, -1, -1, 6, -1, -1, -1, 6, -1, 6, 6, 3, -1, -1, -1, 6, -1, 6, 6, 4, -1, 6, 6, 4, 6, 4, 4, 3, -1, -1, -1, 6, -1, 6, 6, 5, -1, 6, 6, 5, 6, 5, 5, 3, -1, 6, 6, 5, 6, 5, 5, 4, 6, 5, 5, 4, 5, 4, 4, 3, -1, -1, -1, -1, -1, -1, -1, 7, -1, -1, -1, 7, -1, 7, 7, 3, -1, -1, -1, 7, -1, 7, 7, 4, -1, 7, 7, 4, 7, 4, 4, 3, -1, -1, -1, 7, -1, 7, 7, 5, -1, 7, 7, 5, 7, 5, 5, 3, -1, 7, 7, 5, 7, 5, 5, 4, 7, 5, 5, 4, 5, 4, 4, 3, -1, -1, -1, 7, -1, 7, 7, 6, -1, 7, 7, 6, 7, 6, 6, 3, -1, 7, 7, 6, 7, 6, 6, 4, 7, 6, 6, 4, 6, 4, 4, 3, -1, 7, 7, 6, 7, 6, 6, 5, 7, 6, 6, 5, 6, 5, 5, 3, 7, 6, 6, 5, 6, 5, 5, 4, 6, 5, 5, 4, 5, 4, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 5, -1, -1, -1, -1, -1, -1, -1, 5, -1, -1, -1, 5, -1, 5, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 6, -1, -1, -1, -1, -1, -1, -1, 6, -1, -1, -1, 6, -1, 6, 6, 4, -1, -1, -1, -1, -1, -1, -1, 6, -1, -1, -1, 6, -1, 6, 6, 5, -1, -1, -1, 6, -1, 6, 6, 5, -1, 6, 6, 5, 6, 5, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 7, -1, -1, -1, -1, -1, -1, -1, 7, -1, -1, -1, 7, -1, 7, 7, 4, -1, -1, -1, -1, -1, -1, -1, 7, -1, -1, -1, 7, -1, 7, 7, 5, -1, -1, -1, 7, -1, 7, 7, 5, -1, 7, 7, 5, 7, 5, 5, 4, -1, -1, -1, -1, -1, -1, -1, 7, -1, -1, -1, 7, -1, 7, 7, 6, -1, -1, -1, 7, -1, 7, 7, 6, -1, 7, 7, 6, 7, 6, 6, 4, -1, -1, -1, 7, -1, 7, 7, 6, -1, 7, 7, 6, 7, 6, 6, 5, -1, 7, 7, 6, 7, 6, 6, 5, 7, 6, 6, 5, 6, 5, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 6, -1, -1, -1, -1, -1, -1, -1, 6, -1, -1, -1, 6, -1, 6, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 7, -1, -1, -1, -1, -1, -1, -1, 7, -1, -1, -1, 7, -1, 7, 7, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 7, -1, -1, -1, -1, -1, -1, -1, 7, -1, -1, -1, 7, -1, 7, 7, 6, -1, -1, -1, -1, -1, -1, -1, 7, -1, -1, -1, 7, -1, 7, 7, 6, -1, -1, -1, 7, -1, 7, 7, 6, -1, 7, 7, 6, 7, 6, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 7, -1, -1, -1, -1, -1, -1, -1, 7, -1, -1, -1, 7, -1, 7, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 7 }; /** Maps integers bijectively into natural numbers. * *

This method will map a negative integer x to -2x-1 and * a nonnegative integer x to 2x. It can be used to save * integers in the range [{@link Integer#MIN_VALUE}/2..{@link Integer#MAX_VALUE}/2] * (i.e., [-230..230-1]) * using the standard coding methods (which all work on natural numbers). Note * that no range checks are performed. * *

The inverse of the above map is computed by {@link #nat2int(int)}. * * @param x an integer. * @return the argument mapped into a natural number. * @see #nat2int(int) */ public static int int2nat(final int x) { return (x << 1) ^ (x >> Integer.SIZE - 1); } /** Maps natural numbers bijectively into integers. * *

This method computes the inverse of {@link #int2nat(int)}. * * @param x a natural number. * @return the argument mapped into an integer. * @see #int2nat(int) */ public static int nat2int(final int x) { return (x >> 1) ^ ~((x & 1) - 1); } /** Maps longs bijectively into long natural numbers. * *

This method will map a negative long x to -2x-1 and * a nonnegative long x to 2x. It can be used to save * longs in the range [{@link Long#MIN_VALUE}/2..{@link Long#MAX_VALUE}/2] * (i.e., [-262..262-1]) * using the standard coding methods (which all work on natural numbers). Note * that no range checks are performed. * *

The inverse of the above map is computed by {@link #nat2int(long)}. * * @param x a long. * @return the argument mapped into a long natural number. * @see #int2nat(int) */ public static long int2nat(final long x) { return (x << 1) ^ (x >> Long.SIZE - 1); } /** Maps long natural numbers bijectively into longs. * *

This method computes the inverse of {@link #int2nat(long)}. * * @param x a long natural number. * @return the argument mapped into a long. * @see #nat2int(int) */ public static long nat2int(final long x) { return (x >> 1) ^ ~((x & 1) - 1); } /** Returns the base-two logarithm of the argument. * * @param x a double. * @return the base-2 logarithm of x. */ public static double log2(final double x) { return Math.log(x) / 0.6931471805599453; } /** Computes the ceiling of the base-two logarithm of the argument. * *

This method relies on {@link #mostSignificantBit(int)}, and thus is pretty fast. * * @param x an integer. * @return the ceiling of the base-two logarithm of the argument, or -1 if x is zero. */ public static int ceilLog2(final int x) { if (x <= 2) return x - 1; return Integer.SIZE - Integer.numberOfLeadingZeros(x - 1); } /** Computes the ceiling of the base-two logarithm of the argument. * *

This method relies on {@link #mostSignificantBit(long)}, and thus is pretty fast. * * @param x an integer. * @return the ceiling of the base-two logarithm of the argument, or -1 if x is zero. */ public static int ceilLog2(final long x) { if (x <= 2) return (int)(x - 1); return Long.SIZE - Long.numberOfLeadingZeros(x - 1); } /** Computes an approximate integer base-2 logarithm of the argument. * *

This method relies on {@link Double#doubleToRawLongBits(double)}, and thus is very * fast if the former is intrinsified by the JVM. * * @param x a double. * @return an integer approximation of the base-two logarithm of the argument. */ public static int approximateLog2(final double x) { final long bits = Double.doubleToRawLongBits(x); // The exponent is corrected by one if the first significand digits are big enough. return (int)((bits >>> 52) & 0x7FF) - 1023 + ((bits >>> 48 & 0xF) > 6 ? 1 : 0); } /** Quickly raises 2 to the argument. * * @param exponent an integer exponent between -62 ad 62. * @return 2exponent. */ public static double pow2(final int exponent) { //return fixedValues[approximate + (1 << EXPONENT_BITS) - ADJUSTMENT - 1]; if (exponent < 0) return 1. / (1L << -exponent); return 1L << exponent; } /** Returns the number of bits that are necessary to encode the argument. * * @param x an integer. * @return the number of bits that are necessary to encode x. */ public static int length(final int x) { return x == 0 ? 1 : mostSignificantBit(x) + 1; } /** Returns the number of bits that are necessary to encode the argument. * * @param x a long. * @return the number of bits that are necessary to encode x. */ public static int length(final long x) { return x == 0 ? 1 : mostSignificantBit(x) + 1; } private static int selectBroadword(final long x, final int rank) { // Phase 1: sums by byte long byteSums = x - ((x & 0xa * ONES_STEP_4) >>> 1); byteSums = (byteSums & 3 * ONES_STEP_4) + ((byteSums >>> 2) & 3 * ONES_STEP_4); byteSums = (byteSums + (byteSums >>> 4)) & 0x0f * ONES_STEP_8; byteSums *= ONES_STEP_8; // Phase 2: compare each byte sum with rank to obtain the relevant byte final long rankStep8 = rank * ONES_STEP_8; final long byteOffset = (((((rankStep8 | MSBS_STEP_8) - byteSums) & MSBS_STEP_8) >>> 7) * ONES_STEP_8 >>> 53) & ~0x7; // Phase 3: Locate the relevant byte and make 8 copies with incremental masks final int byteRank = (int)(rank - (((byteSums << 8) >>> byteOffset) & 0xFF)); final long spreadBits = (x >>> byteOffset & 0xFF) * ONES_STEP_8 & INCR_STEP_8; final long bitSums = (((spreadBits | ((spreadBits | MSBS_STEP_8) - ONES_STEP_8)) & MSBS_STEP_8) >>> 7) * ONES_STEP_8; // Compute the inside-byte location and return the sum final long byteRankStep8 = byteRank * ONES_STEP_8; return (int)(byteOffset + (((((byteRankStep8 | MSBS_STEP_8) - bitSums) & MSBS_STEP_8) >>> 7) * ONES_STEP_8 >>> 56)); } private final static long overflow[] = { 0x7f7f7f7f7f7f7f7fL, 0x7e7e7e7e7e7e7e7eL, 0x7d7d7d7d7d7d7d7dL, 0x7c7c7c7c7c7c7c7cL, 0x7b7b7b7b7b7b7b7bL, 0x7a7a7a7a7a7a7a7aL, 0x7979797979797979L, 0x7878787878787878L, 0x7777777777777777L, 0x7676767676767676L, 0x7575757575757575L, 0x7474747474747474L, 0x7373737373737373L, 0x7272727272727272L, 0x7171717171717171L, 0x7070707070707070L, 0x6f6f6f6f6f6f6f6fL, 0x6e6e6e6e6e6e6e6eL, 0x6d6d6d6d6d6d6d6dL, 0x6c6c6c6c6c6c6c6cL, 0x6b6b6b6b6b6b6b6bL, 0x6a6a6a6a6a6a6a6aL, 0x6969696969696969L, 0x6868686868686868L, 0x6767676767676767L, 0x6666666666666666L, 0x6565656565656565L, 0x6464646464646464L, 0x6363636363636363L, 0x6262626262626262L, 0x6161616161616161L, 0x6060606060606060L, 0x5f5f5f5f5f5f5f5fL, 0x5e5e5e5e5e5e5e5eL, 0x5d5d5d5d5d5d5d5dL, 0x5c5c5c5c5c5c5c5cL, 0x5b5b5b5b5b5b5b5bL, 0x5a5a5a5a5a5a5a5aL, 0x5959595959595959L, 0x5858585858585858L, 0x5757575757575757L, 0x5656565656565656L, 0x5555555555555555L, 0x5454545454545454L, 0x5353535353535353L, 0x5252525252525252L, 0x5151515151515151L, 0x5050505050505050L, 0x4f4f4f4f4f4f4f4fL, 0x4e4e4e4e4e4e4e4eL, 0x4d4d4d4d4d4d4d4dL, 0x4c4c4c4c4c4c4c4cL, 0x4b4b4b4b4b4b4b4bL, 0x4a4a4a4a4a4a4a4aL, 0x4949494949494949L, 0x4848484848484848L, 0x4747474747474747L, 0x4646464646464646L, 0x4545454545454545L, 0x4444444444444444L, 0x4343434343434343L, 0x4242424242424242L, 0x4141414141414141L, 0x4040404040404040L }; private static int selectGogPetri(final long x, final int rank) { assert rank < Long.bitCount(x); // Phase 1: sums by byte long byteSums = x - ((x >>> 1) & 0x5 * ONES_STEP_4); byteSums = (byteSums & 3 * ONES_STEP_4) + ((byteSums >>> 2) & 3 * ONES_STEP_4); byteSums = (byteSums + (byteSums >>> 4)) & 0x0f * ONES_STEP_8; byteSums *= ONES_STEP_8; // Phase 2: compare each byte sum with rank to obtain the relevant byte final int byteOffset = (Long.numberOfTrailingZeros(byteSums + overflow[rank] & 0x8080808080808080L) >> 3) << 3; return byteOffset + selectInByte[(int)(x >>> byteOffset & 0xFF) | (int)(rank - (((byteSums << 8) >>> byteOffset) & 0xFF)) << 8]; } /** Returns the position of a bit of given rank (starting from zero). * * @param x a long. * @param rank an integer smaller than the number of ones in {@code x}; impredictable * results (including exceptions) might happen if this constraint is violated. * @return the position in x of the bit of given rank. */ public static int select(final long x, final int rank) { assert rank < Long.bitCount(x); // Phase 1: sums by byte long byteSums = x - ((x >>> 1) & 0x5 * ONES_STEP_4); byteSums = (byteSums & 3 * ONES_STEP_4) + ((byteSums >>> 2) & 3 * ONES_STEP_4); byteSums = (byteSums + (byteSums >>> 4)) & 0x0f * ONES_STEP_8; byteSums *= ONES_STEP_8; // Phase 2: compare each byte sum with rank to obtain the relevant byte final int byteOffset = Long.bitCount(((rank * ONES_STEP_8 | MSBS_STEP_8) - byteSums) & MSBS_STEP_8) << 3; return byteOffset + selectInByte[(int)(x >>> byteOffset & 0xFF) | (int)(rank - (((byteSums << 8) >>> byteOffset) & 0xFF)) << 8]; } /** Returns the most significant bit of a long. * *

This method returns 63 − {@link Long#numberOfLeadingZeros(long) Long.numberOfLeadingZeroes(x)}. * * @param x a long. * @return the most significant bit of x, of x is nonzero; −1, otherwise. */ public static int mostSignificantBit(final long x) { return 63 - Long.numberOfLeadingZeros(x); } /** Returns the most significant bit of an integer. * * @param x an integer. * @return the most significant bit of x, of x is nonzero; −1, otherwise. * @see #mostSignificantBit(long) */ public static int mostSignificantBit(final int x) { return 31 - Integer.numberOfLeadingZeros(x); } public static void main(final String a[]) { final long n = Long.parseLong(a[0]); long start, elapsed; final long w = 0xFFFFFFFFFFFFFFFFL; int x = 0; for(int k = 10; k-- !=0;) { System.out.print("Broadword select (new): "); start = System.nanoTime(); for(long i = n; i-- != 0;) x ^= Fast.select(w, (int)(i & 63)); elapsed = System.nanoTime() - start; System.out.println("elapsed " + elapsed + ", " + (double)elapsed / n + " ns/call"); System.out.print("Broadword select (Gog & Petri): "); start = System.nanoTime(); for(long i = n; i-- != 0;) x ^= Fast.selectGogPetri(w, (int)(i & 63)); elapsed = System.nanoTime() - start; System.out.println("elapsed " + elapsed + ", " + (double)elapsed / n + " ns/call"); System.out.print("Broadword select (old): "); start = System.nanoTime(); for(long i = n; i-- != 0;) x ^= Fast.selectBroadword(w, (int)(i & 63)); elapsed = System.nanoTime() - start; System.out.println("elapsed " + elapsed + ", " + (double)elapsed / n + " ns/call"); } if (x == 0) System.out.println(0); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy