All Downloads are FREE. Search and download functionalities are using the official Maven repository.

src.it.unimi.dsi.util.HyperLogLogCounterArray Maven / Gradle / Ivy

Go to download

The DSI utilities are a mishmash of classes accumulated during the last twenty years in projects developed at the DSI (Dipartimento di Scienze dell'Informazione, i.e., Information Sciences Department), now DI (Dipartimento di Informatica, i.e., Informatics Department), of the Universita` degli Studi di Milano.

There is a newer version: 2.7.3
Show newest version
package it.unimi.dsi.util;

/*
 * DSI utilities
 *
 * Copyright (C) 2010-2020 Paolo Boldi and Sebastiano Vigna
 *
 *  This library is free software; you can redistribute it and/or modify it
 *  under the terms of the GNU Lesser General Public License as published by the Free
 *  Software Foundation; either version 3 of the License, or (at your option)
 *  any later version.
 *
 *  This library is distributed in the hope that it will be useful, but
 *  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 *  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License
 *  for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public License
 *  along with this program; if not, see .
 *
 */

import it.unimi.dsi.Util;
import it.unimi.dsi.bits.Fast;
import it.unimi.dsi.bits.LongArrayBitVector;
import it.unimi.dsi.fastutil.longs.LongBigList;

import java.io.Serializable;
import java.util.Arrays;

/**
 * An array of approximate sets each represented using a HyperLogLog counter.
 *
 * 

HyperLogLog counters represent the number of elements of a set in an approximate way. They have been * introduced by Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Freédeéric Meunier in * “HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm”, * Proceedings of the 13th conference on analysis of algorithm (AofA 07), pages * 127−146, 2007. They are an improvement over the basic idea of loglog counting, introduced by * Marianne Durand and Philippe Flajolet in “Loglog counting of large cardinalities”, * ESA 2003, 11th Annual European Symposium, volume 2832 of Lecture Notes in Computer Science, pages 605−617, Springer, 2003. * *

Each counter is composed by {@link #m} registers, and each register is made of {@link #registerSize} bits. * The first number depends on the desired relative standard deviation, and its logarithm can be computed using {@link #log2NumberOfRegisters(double)}, * whereas the second number depends on an upper bound on the number of distinct elements to be counted, and it can be computed * using {@link #registerSize(long)}. * *

Actually, this class implements an array of counters. Each counter is completely independent, but they all use the same hash function. * The reason for this design is that in our intended applications hundred of millions of counters are common, and the JVM overhead to create such a number of objects * would be unbearable. This class allocates an array of {@link LongArrayBitVector}s, each containing {@link #CHUNK_SIZE} registers, * and can thus handle billions of billions of registers efficiently (in turn, this means being able to * handle an array of millions of billions of high-precision counters). * *

When creating an instance, you can choose the size of the array (i.e., the number of counters) and the desired relative standard deviation * (either {@linkplain #HyperLogLogCounterArray(long, long, double) explicitly} or * {@linkplain #HyperLogLogCounterArray(long, long, int) choosing the number of registers per counter}). * Then, you can {@linkplain #add(long, long) add an element to a counter}. At any time, you can * {@linkplain #count(long) count} count (approximately) the number of distinct elements that have been added to a counter. * *

If you need to reuse this class multiple times, you can {@linkplain #clear() clear all registers}, possibly {@linkplain #clear(long) setting a new seed}. * The seed is used to compute the hash function used by the HyperLogLog counters. * * *

Utility methods

* *

This class provides a number of utility methods that make it possible to {@linkplain #getCounter(long, long[]) extract a counter as an array of longs}, * {@linkplain #setCounter(long[], long) set the contents of a counter given an array of longs}, and * {@linkplain #max(long[], long[]) maximize quickly two counters given as arrays of longs}. * * @author Paolo Boldi * @author Sebastiano Vigna */ public class HyperLogLogCounterArray implements Serializable { private static final long serialVersionUID = 1L; private static final boolean ASSERTS = false; private static final boolean DEBUG = false; /** The logarithm of the maximum size in registers of a bit vector. */ public final static int CHUNK_SHIFT = 30; /** The maximum size in registers of a bit vector. */ public final static long CHUNK_SIZE = 1L << CHUNK_SHIFT; /** The mask used to obtain an register offset in a chunk. */ public final static long CHUNK_MASK = CHUNK_SIZE - 1; /** The correct value for α, multiplied by {@link #m}2 (see the paper). */ private double alphaMM; /** The number of registers minus one. */ protected final int mMinus1; /** An array of arrays of longs containing all registers. */ protected final long bits[][]; /** {@link #registerSize}-bit views of {@link #bits}. */ protected final LongBigList registers[]; /** The shift that selects the chunk corresponding to a counter. */ protected final int counterShift; /** A seed for hashing. */ protected long seed; /** The mask OR'd with the output of the hash function so that {@link Long#numberOfTrailingZeros(long)} does not return too large a value. */ private long sentinelMask; /** Whether counters are aligned to longwords. */ protected final boolean longwordAligned; /** A mask for the residual bits of a counter (the {@link #counterSize} % {@link Long#SIZE} lowest bits). */ protected final long counterResidualMask; /** A mask containing a one in the most significant bit of each register (i.e., in positions of the form {@link #registerSize registerSize * (i + 1) - 1}). */ protected final long[] msbMask; /** A mask containing a one in the least significant bit of each register (i.e., in positions of the form {@link #registerSize registerSize * i}). */ protected final long[] lsbMask; /** The logarithm of the number of registers per counter (at most 30). */ public final int log2m; /** The number of registers per counter. */ public final int m; /** The size in bits of each register. */ public final int registerSize; /** The size in bits of each counter ({@link #registerSize} * {@link #m}). */ public final int counterSize; /** The size of a counter in longwords (ceiled if there are less then {@link Long#SIZE} registers per counter). */ public final int counterLongwords; /** * Returns the logarithm of the number of registers per counter that are necessary to attain a * given relative standard deviation. * * @param rsd the relative standard deviation to be attained. * @return the logarithm of the number of registers that are necessary to attain relative standard deviation rsd. */ public static int log2NumberOfRegisters(final double rsd) { // 1.106 is valid for 16 registers or more. return (int)Math.ceil(Fast.log2((1.106 / rsd) * (1.106 / rsd))); } /** * Returns the relative standard deviation corresponding to a given logarithm of the number of registers per counter. * * @param log2m the logarithm of the number of registers per counter (at most 30). * @return the resulting relative standard deviation. */ public static double relativeStandardDeviation(final int log2m) { return (log2m == 4 ? 1.106 : log2m == 5 ? 1.070 : log2m == 6 ? 1.054 : log2m == 7 ? 1.046 : 1.04) / Math.sqrt(1 << log2m); } /** * Returns the register size in bits, given an upper bound on the number of distinct elements. * * @param n an upper bound on the number of distinct elements. * @return the register size in bits. */ public static int registerSize(final long n) { return Math.max(5, (int)Math.ceil(Math.log(Math.log(n) / Math.log(2)) / Math.log(2))); } /** Returns the chunk of a given counter. * * @param counter a counter. * @return its chunk. */ public int chunk(final long counter) { return (int)(counter >>> counterShift); } /** Returns the bit offset of a given counter in its chunk. * * @param counter a counter. * @return the starting bit of the given counter in its chunk. */ public long offset(final long counter) { return (counter << log2m & CHUNK_MASK) * registerSize; } /** * Creates a new array of counters. * * @param arraySize the number of counters. * @param n the expected number of elements. * @param rsd the relative standard deviation. */ public HyperLogLogCounterArray(final long arraySize, final long n, final double rsd) { this(arraySize, n, log2NumberOfRegisters(rsd)); } /** * Creates a new array of counters. * * @param arraySize the number of counters. * @param n the expected number of elements. * @param log2m the logarithm of the number of registers per counter (at most 30). */ public HyperLogLogCounterArray(final long arraySize, final long n, final int log2m) { this(arraySize, n, log2m, Util.randomSeed()); } /** * Creates a new array of counters. * * @param arraySize the number of counters. * @param n the expected number of elements. * @param log2m the logarithm of the number of registers per counter (at most 30). * @param seed the seed used to compute the hash function. */ public HyperLogLogCounterArray(final long arraySize, final long n, final int log2m, final long seed) { if (log2m > Integer.SIZE - 2) throw new IllegalArgumentException("The logarithm of the number of register per counter (" + log2m + ") is too large"); this.m = 1 << (this.log2m = log2m); this.mMinus1 = m - 1; this.registerSize = registerSize(n); this.counterSize = registerSize << log2m; counterShift = CHUNK_SHIFT - log2m; sentinelMask = 1L << (1 << registerSize) - 2; // System.err.println(arraySize + " " + m + " " + registerSize); final long sizeInRegisters = arraySize * m; final int numVectors = (int)((sizeInRegisters + CHUNK_MASK) >>> CHUNK_SHIFT); bits = new long[numVectors][]; registers = new LongBigList[numVectors]; for(int i = 0; i < numVectors; i++) { final LongArrayBitVector bitVector = LongArrayBitVector.ofLength(registerSize * Math.min(CHUNK_SIZE, sizeInRegisters - ((long)i << CHUNK_SHIFT))); bits[i] = bitVector.bits(); registers[i] = bitVector.asLongBigList(registerSize); } counterLongwords = (counterSize + Long.SIZE - 1) / Long.SIZE; counterResidualMask = (1L << counterSize % Long.SIZE) - 1; longwordAligned = counterSize % Long.SIZE == 0; // We initialise the masks for the broadword code in max(). msbMask = new long[counterLongwords]; lsbMask = new long[counterLongwords]; for(int i = registerSize - 1; i < msbMask.length * Long.SIZE; i += registerSize) msbMask[i / Long.SIZE] |= 1L << i % Long.SIZE; for(int i = 0; i < lsbMask.length * Long.SIZE; i += registerSize) lsbMask[i / Long.SIZE] |= 1L << i % Long.SIZE; this.seed = seed; if (DEBUG) System.err.println("Register size: " + registerSize + " log2m (b): " + log2m + " m: " + m); // See the paper. switch (log2m) { case 4: alphaMM = 0.673 * m * m; break; case 5: alphaMM = 0.697 * m * m; break; case 6: alphaMM = 0.709 * m * m; break; default: alphaMM = (0.7213 / (1 + 1.079 / m)) * m * m; } } /** Clears all registers and sets a new seed (e.g., using {@link Util#randomSeed()}). * * @param seed the new seed used to compute the hash function */ public void clear(final long seed) { clear(); this.seed = seed; } /** Clears all registers. */ public void clear() { for(long[] a: bits) Arrays.fill(a, 0); } private final static long jenkins(final long x, final long seed) { long a, b, c; /* Set up the internal state */ a = seed + x; b = seed; c = 0x9e3779b97f4a7c13L; /* the golden ratio; an arbitrary value */ a -= b; a -= c; a ^= (c >>> 43); b -= c; b -= a; b ^= (a << 9); c -= a; c -= b; c ^= (b >>> 8); a -= b; a -= c; a ^= (c >>> 38); b -= c; b -= a; b ^= (a << 23); c -= a; c -= b; c ^= (b >>> 5); a -= b; a -= c; a ^= (c >>> 35); b -= c; b -= a; b ^= (a << 49); c -= a; c -= b; c ^= (b >>> 11); a -= b; a -= c; a ^= (c >>> 12); b -= c; b -= a; b ^= (a << 18); c -= a; c -= b; c ^= (b >>> 22); return c; } /** Adds an element to a counter. * * @param k the index of the counter. * @param v the element to be added. */ public void add(final long k, final long v) { final long x = jenkins(v, seed); final int j = (int)(x & mMinus1); final int r = Long.numberOfTrailingZeros(x >>> log2m | sentinelMask); if (ASSERTS) assert r < (1 << registerSize) - 1; if (ASSERTS) assert r >= 0; final LongBigList l = registers[chunk(k)]; final long offset = ((k << log2m) + j) & CHUNK_MASK; l.set(offset, Math.max(r + 1, l.getLong(offset))); } /** Returns the array of big lists of registers underlying this array of counters. * *

The main purpose of this method is debugging, as it makes comparing * the evolution of the state of two implementations easy. * * @return the array of big lists of registers underlying this array of counters. */ public LongBigList[] registers() { return registers; } /** Estimates the number of distinct elements that have been added to a given counter so far. * *

This is an low-level method that should be used only after having understood in detail * the inner workings of this class. * * @param bits the bit array containing the counter. * @param offset the starting bit position of the counter in bits. * @return an approximation of the number of distinct elements that have been added to counter so far. */ public double count(final long[] bits, final long offset) { int remaining = (int)(Long.SIZE - offset % Long.SIZE); int word = (int)(offset / Long.SIZE); long curr = bits[word] >>> offset % Long.SIZE; final int registerSize = this.registerSize; final int mask = (1 << registerSize) - 1; double s = 0; int zeroes = 0; long r; for (int j = m; j-- != 0;) { if (remaining >= registerSize) { r = curr & mask; curr >>>= registerSize; remaining -= registerSize; } else { r = (curr | bits[++word] << remaining) & mask; curr = bits[word] >>> registerSize - remaining; remaining += Long.SIZE - registerSize; } // if (ASSERTS) assert r == registers[chunk(k)].getLong(offset(k) + j) : "[" + j + "] " + r + "!=" + registers[chunk(k)].getLong(offset(k) + j); if (r == 0) zeroes++; s += 1. / (1L << r); } s = alphaMM / s; if (DEBUG) System.err.println("Zeroes: " + zeroes); if (zeroes != 0 && s < 5. * m / 2) { if (DEBUG) System.err.println("Small range correction"); return m * Math.log((double)m / zeroes); } else return s; } /** Estimates the number of distinct elements that have been added to a given counter so far. * * @param k the index of the counter. * @return an approximation of the number of distinct elements that have been added to counter k so far. */ public double count(final long k) { return count(bits[chunk(k)], offset(k)); } /** Sets the contents of a counter of this {@link HyperLogLogCounterArray} using a provided array of longs. * *

Warning: this is a low-level method. You must know what you're doing. * * @param source an array of at least {@link #counterLongwords} longs containing a counter. * @param chunkBits the array where the counter will be stored. * @param index the index of the counter that will be filled with the provided array. * @see #getCounter(long[], long, long[]) */ public final void setCounter(final long[] source, final long[] chunkBits, final long index) { if (longwordAligned) System.arraycopy(source, 0, chunkBits, (int)(offset(index) / Long.SIZE), counterLongwords); else { // Offset in bits final long offset = offset(index); // Offsets in elements in the array final int longwordOffset = (int)(offset / Long.SIZE); // Offset in bits in the word of index longwordOffset final int bitOffset = (int)(offset % Long.SIZE); final int last = counterLongwords - 1; if (bitOffset == 0) { for(int i = last; i-- != 0;) chunkBits[longwordOffset + i] = source[i]; chunkBits[longwordOffset + last] &= ~counterResidualMask; chunkBits[longwordOffset + last] |= source[last] & counterResidualMask; } else { chunkBits[longwordOffset] &= (1L << bitOffset) - 1; chunkBits[longwordOffset] |= source[0] << bitOffset; for(int i = 1; i < last; i++) chunkBits[longwordOffset + i] = source[i - 1] >>> Long.SIZE - bitOffset | source[i] << bitOffset; final int remaining = counterSize % Long.SIZE + bitOffset; final long mask = -1L >>> (Long.SIZE - Math.min(Long.SIZE, remaining)); chunkBits[longwordOffset + last] &= ~mask; chunkBits[longwordOffset + last] |= mask & (source[last - 1] >>> Long.SIZE - bitOffset | source[last] << bitOffset); // Note that it is impossible to enter in this conditional unless you use 7 or more bits per register, which is unlikely. if (remaining > Long.SIZE) { final long mask2 = (1L << remaining - Long.SIZE) - 1; chunkBits[longwordOffset + last + 1] &= ~mask2; chunkBits[longwordOffset + last + 1] |= mask2 & (source[last] >>> Long.SIZE - bitOffset); } } if (ASSERTS) { final LongArrayBitVector l = LongArrayBitVector.wrap(chunkBits); for(int i = 0; i < counterSize; i++) assert l.getBoolean(offset + i) == ((source[i / Long.SIZE] & (1L << i % Long.SIZE)) != 0); } } } /** Sets the contents of a counter of this {@link HyperLogLogCounterArray} using a provided array of longs. * *

Warning: this is a low-level method. You must know what you're doing. * * @param source an array of at least {@link #counterLongwords} longs containing a counter. * @param index the index of the counter that will be filled with the provided array. * @see #setCounter(long[], long[], long) */ public void setCounter(final long[] source, final long index) { setCounter(source, bits[chunk(index)], index); } /** Extracts a counter from this {@link HyperLogLogCounterArray} and writes it into an array of longs. * *

Warning: this is a low-level method. You must know what you're doing. * * @param chunkBits the array storing the counter. * @param index the index of the counter to be extracted. * @param dest an array of at least {@link #counterLongwords} longs where the counter of given index will be written. * @see #setCounter(long[], long[], long) */ public final void getCounter(final long[] chunkBits, final long index, final long[] dest) { if (longwordAligned) System.arraycopy(chunkBits, (int)(offset(index) / Long.SIZE), dest, 0, counterLongwords); else { // Offset in bits final long offset = offset(index); // Offsets in elements in the array final int longwordOffset = (int)(offset / Long.SIZE); // Offset in bits in the word of index longwordOffset final int bitOffset = (int)(offset % Long.SIZE); final int last = counterLongwords - 1; if (bitOffset == 0) { for(int i = last; i-- != 0;) dest[i] = chunkBits[longwordOffset + i]; dest[last] = chunkBits[longwordOffset + last] & counterResidualMask; } else { for(int i = 0; i < last; i++) dest[i] = chunkBits[longwordOffset + i] >>> bitOffset | chunkBits[longwordOffset + i + 1] << Long.SIZE - bitOffset; dest[last] = chunkBits[longwordOffset + last] >>> bitOffset & counterResidualMask; } } } /** Extracts a counter from this {@link HyperLogLogCounterArray} and writes it into an array of longs. * *

Warning: this is a low-level method. You must know what you're doing. * * @param index the index of the counter to be extracted. * @param dest an array of at least {@link #counterLongwords} longs where the counter of given index will be written. * @see #getCounter(long[], long, long[]) */ public final void getCounter(final long index, final long[] dest) { getCounter(bits[chunk(index)], index, dest); } /** Transfers the content of a counter between two parallel array of longwords. * *

Warning: this is a low-level method. You must know what you're doing. * * @param source the source array. * @param dest the destination array. * @param node the node number. */ public final void transfer(final long[] source, final long[] dest, final long node) { if (longwordAligned) { final int longwordOffset = (int)(offset(node) / Long.SIZE); System.arraycopy(source, longwordOffset, dest, longwordOffset, counterLongwords); } else { // Offset in bits in the array final long offset = offset(node); // Offsets in elements in the array final int longwordOffset = (int)(offset / Long.SIZE); // Offset in bits in the word of index longwordOffset final int bitOffset = (int)(offset % Long.SIZE); final int last = counterLongwords - 1; if (bitOffset == 0) { for(int i = last; i-- != 0;) dest[longwordOffset + i] = source[longwordOffset + i]; dest[longwordOffset + last] &= ~counterResidualMask; dest[longwordOffset + last] |= source[longwordOffset + last] & counterResidualMask; } else { final long mask = -1L << bitOffset; dest[longwordOffset] &= ~mask; dest[longwordOffset] |= source[longwordOffset] & mask; for(int i = 1; i < last; i++) dest[longwordOffset + i] = source[longwordOffset + i]; final int remaining = (counterSize + bitOffset) % Long.SIZE; if (remaining == 0) dest[longwordOffset + last] = source[longwordOffset + last]; else { final long mask2 = (1L << remaining) - 1; dest[longwordOffset + last] &= ~mask2; dest[longwordOffset + last] |= mask2 & source[longwordOffset + last]; } } if (ASSERTS) { LongArrayBitVector aa = LongArrayBitVector.wrap(source); LongArrayBitVector bb = LongArrayBitVector.wrap(dest); for(int i = 0; i < counterSize; i++) assert aa.getBoolean(offset + i) == bb.getBoolean(offset + i); } } } /** Performs a multiple precision subtraction, leaving the result in the first operand. * * @param x an array of longs. * @param y an array of longs that will be subtracted from x. * @param l the length of x and y. */ private static final void subtract(final long[] x, final long[] y, final int l) { boolean borrow = false; for(int i = 0; i < l; i++) { if (! borrow || x[i]-- != 0) borrow = x[i] < y[i] ^ x[i] < 0 ^ y[i] < 0; // This expression returns the result of an unsigned strict comparison. x[i] -= y[i]; } } /** Computes the register-by-register maximum of two counters. * *

This method will allocate two temporary arrays. To reduce object creation, use {@link #max(long[], long[], long[], long[])}. * * @param x a first array of at least {@link #counterLongwords} longs containing a counter. * @param y a second array of at least {@link #counterLongwords} longs containing a counter. */ public final void max(final long[] x, final long[] y) { max(x, y, new long[x.length], new long[y.length]); } /** Computes the register-by-register maximum of two counters. * * @param x a first array of at least {@link #counterLongwords} longs containing a counter. * @param y a second array of at least {@link #counterLongwords} longs containing a counter. * @param accumulator a support array of at least {@link #counterLongwords} longs. * @param mask a support array of at least {@link #counterLongwords} longs. */ public final void max(final long[] x, final long[] y, final long[] accumulator, final long[] mask) { final int l = x.length; final long[] msbMask = this.msbMask; /* We work in two phases. Let H_r (msbMask) by the mask with the * highest bit of each register (of size r) set, and L_r (lsbMask) * be the mask with the lowest bit of each register set. * We describe the algorithm on a single word. * * If the first phase we perform an unsigned strict register-by-register * comparison of x and y, using the formula * * z = ((((y | H_r) - (x & ~H_r)) | (y ^ x))^ (y | ~x)) & H_r * * Then, we generate a register-by-register mask of all ones or * all zeroes, depending on the result of the comparison, using the * formula * * (((z >> r-1 | H_r) - L_r) | H_r) ^ z * * At that point, it is trivial to select from x and y the right values. */ // We load y | H_r into the accumulator. for(int i = l; i-- != 0;) accumulator[i] = y[i] | msbMask[i]; // We subtract x & ~H_r, using mask as temporary storage for(int i = l; i-- != 0;) mask[i] = x[i] & ~msbMask[i]; subtract(accumulator, mask, l); // We OR with x ^ y, XOR with (x | ~y), and finally AND with H_r. for(int i = l; i-- != 0;) accumulator[i] = ((accumulator[i] | (y[i] ^ x[i])) ^ (y[i] | ~x[i])) & msbMask[i]; if (ASSERTS) { final LongBigList a = LongArrayBitVector.wrap(x).asLongBigList(registerSize); final LongBigList b = LongArrayBitVector.wrap(y).asLongBigList(registerSize); for(int i = 0; i < m; i++) { long pos = (i + 1) * (long)registerSize - 1; assert (b.getLong(i) < a.getLong(i)) == ((accumulator[(int)(pos / Long.SIZE)] & 1L << pos % Long.SIZE) != 0); } } // We shift by registerSize - 1 places and put the result into mask. final int rMinus1 = registerSize - 1, longSizeMinusRMinus1 = Long.SIZE - rMinus1; for(int i = l - 1; i-- != 0;) mask[i] = accumulator[i] >>> rMinus1 | accumulator[i + 1] << longSizeMinusRMinus1 | msbMask[i]; mask[l - 1] = accumulator[l - 1] >>> rMinus1 | msbMask[l - 1]; // We subtract L_r from mask. subtract(mask, lsbMask, l); // We OR with H_r and XOR with the accumulator. for(int i = l; i-- != 0;) mask[i] = (mask[i] | msbMask[i]) ^ accumulator[i]; if (ASSERTS) { final long[] t = x.clone(); LongBigList a = LongArrayBitVector.wrap(t).asLongBigList(registerSize); LongBigList b = LongArrayBitVector.wrap(y).asLongBigList(registerSize); for(int i = 0; i < Long.SIZE * l / registerSize; i++) a.set(i, Math.max(a.getLong(i), b.getLong(i))); // Note: this must be kept in sync with the line computing the result. for(int i = l; i-- != 0;) assert t[i] == (~mask[i] & x[i] | mask[i] & y[i]); } // Finally, we use mask to select the right bits from x and y and store the result. for(int i = l; i-- != 0;) x[i] ^= (x[i] ^ y[i]) & mask[i]; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy