All Downloads are FREE. Search and download functionalities are using the official Maven repository.

src.it.unimi.dsi.util.XorShift128PlusRandom Maven / Gradle / Ivy

/*
 * DSI utilities
 *
 * Copyright (C) 2013-2023 Sebastiano Vigna
 *
 * This program and the accompanying materials are made available under the
 * terms of the GNU Lesser General Public License v2.1 or later,
 * which is available at
 * http://www.gnu.org/licenses/old-licenses/lgpl-2.1-standalone.html,
 * or the Apache Software License 2.0, which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.
 *
 * SPDX-License-Identifier: LGPL-2.1-or-later OR Apache-2.0
 */

package it.unimi.dsi.util;

import java.util.Random;
import java.util.SplittableRandom;

import it.unimi.dsi.Util;

/** A fast, high-quality {@linkplain Random pseudorandom number generator} that
 * returns the sum of consecutive outputs of a Marsaglia Xorshift generator (described in “Xorshift RNGs”, Journal of
 * Statistical Software, 8:1−6, 2003) with 128 bits of state.
 * It is presently used in the JavaScript engines of
 * Chrome,
 * Firefox,
 * Safari and Edge.
 *
 * 

By using the supplied {@link #jump()} method it is possible to generate non-overlapping long sequences * for parallel computations. This class provides also a {@link #split()} method to support recursive parallel computations, in the spirit of * {@link SplittableRandom}. * *

Warning: before release 2.6.3, the {@link #split()} method * would not alter the state of the caller, and it would return instances initialized in the same * way if called multiple times. This was a major mistake in the implementation and it has been fixed, * but as a consequence the output of the caller after a call to {@link #split()} is * now different, and the result of {@link #split()} is initialized in a different way. * * @see it.unimi.dsi.util * @see Random * @see XoRoShiRo128PlusRandom * @see XorShift128PlusRandomGenerator * @deprecated Please use {@link XoRoShiRo128PlusRandom} instead. */ @Deprecated public class XorShift128PlusRandom extends Random { private static final long serialVersionUID = 1L; /** The internal state of the algorithm. */ private long s0, s1; /** Creates a new generator seeded using {@link Util#randomSeed()}. */ public XorShift128PlusRandom() { this(Util.randomSeed()); } /** Creates a new generator using a given seed. * * @param seed a seed for the generator. */ public XorShift128PlusRandom(final long seed) { setSeed(seed); } @Override public long nextLong() { long s1 = this.s0; final long s0 = this.s1; this.s0 = s0; s1 ^= s1 << 23; return (this.s1 = (s1 ^ s0 ^ (s1 >>> 18) ^ (s0 >>> 5))) + s0; } @Override public int nextInt() { return (int)nextLong(); } @Override public int nextInt(final int n) { return (int)nextLong(n); } /** Returns a pseudorandom uniformly distributed {@code long} value * between 0 (inclusive) and the specified value (exclusive), drawn from * this random number generator's sequence. The algorithm used to generate * the value guarantees that the result is uniform, provided that the * sequence of 64-bit values produced by this generator is. * * @param n the positive bound on the random number to be returned. * @return the next pseudorandom {@code long} value between {@code 0} (inclusive) and {@code n} (exclusive). */ public long nextLong(final long n) { if (n <= 0) throw new IllegalArgumentException(); for(;;) { final long bits = nextLong() >>> 1; final long value = bits % n; if (bits - value + (n - 1) >= 0) return value; } } @Override public double nextDouble() { return (nextLong() >>> 11) * 0x1.0p-53; } @Override public float nextFloat() { return (nextLong() >>> 40) * 0x1.0p-24f; } @Override public boolean nextBoolean() { return nextLong() < 0; } @Override public void nextBytes(final byte[] bytes) { int i = bytes.length, n = 0; while(i != 0) { n = Math.min(i, 8); for (long bits = nextLong(); n-- != 0; bits >>= 8) bytes[--i] = (byte)bits; } } private static final long[] JUMP = { 0x8a5cd789635d2dffL, 0x121fd2155c472f96L }; /** The jump function for this generator. It is equivalent to 264 * calls to {@link #nextLong()}; it can be used to generate 264 * non-overlapping subsequences for parallel computations. */ public void jump() { long s0 = 0; long s1 = 0; for (final long element : JUMP) for(int b = 0; b < 64; b++) { if ((element & 1L << b) != 0) { s0 ^= this.s0; s1 ^= this.s1; } nextLong(); } this.s0 = s0; this.s1 = s1; } /** * Returns a new instance that shares no mutable state * with this instance. The sequence generated by the new instance * depends deterministically from the state of this instance, * but the probability that the sequence generated by this * instance and by the new instance overlap is negligible. * *

Warning: before release 2.6.3, this method * would not alter the state of the caller, and it would return instances initialized in the same * way if called multiple times. This was a major mistake in the implementation and it has been fixed, * but as a consequence the output of this instance after a call to this method is * now different, and the returned instance is initialized in a different way. * * @return the new instance. */ public XorShift128PlusRandom split() { nextLong(); final XorShift128PlusRandom split = new XorShift128PlusRandom(0); long h0 = s0; long h1 = s1; long h2 = s0 + 0x55a650a4c1dac3e9L; // Random constants long h3 = s1 + 0xb39ae98dfa439b73L; // A round of SpookyHash ShortMix h2 = Long.rotateLeft(h2, 50); h2 += h3; h0 ^= h2; h3 = Long.rotateLeft(h3, 52); h3 += h0; h1 ^= h3; h0 = Long.rotateLeft(h0, 30); h0 += h1; h2 ^= h0; h1 = Long.rotateLeft(h1, 41); h1 += h2; h3 ^= h1; h2 = Long.rotateLeft(h2, 54); h2 += h3; h0 ^= h2; h3 = Long.rotateLeft(h3, 48); h3 += h0; h1 ^= h3; h0 = Long.rotateLeft(h0, 38); h0 += h1; h2 ^= h0; h1 = Long.rotateLeft(h1, 37); h1 += h2; h3 ^= h1; h2 = Long.rotateLeft(h2, 62); h2 += h3; h0 ^= h2; h3 = Long.rotateLeft(h3, 34); h3 += h0; h1 ^= h3; h0 = Long.rotateLeft(h0, 5); h0 += h1; h2 ^= h0; h1 = Long.rotateLeft(h1, 36); h1 += h2; //h3 ^= h1; split.s0 = h0; split.s1 = h1; return split; } /** Sets the seed of this generator. * *

The argument will be used to seed a {@link SplitMix64RandomGenerator}, whose output * will in turn be used to seed this generator. This approach makes “warmup” unnecessary, * and makes the probability of starting from a state * with a large fraction of bits set to zero astronomically small. * * @param seed a seed for this generator. */ @Override public void setSeed(final long seed) { final SplitMix64RandomGenerator r = new SplitMix64RandomGenerator(seed); s0 = r.nextLong(); s1 = r.nextLong(); } /** Sets the state of this generator. * *

The internal state of the generator will be reset, and the state array filled with the provided array. * * @param state an array of 2 longs; at least one must be nonzero. */ public void setState(final long[] state) { if (state.length != 2) throw new IllegalArgumentException("The argument array contains " + state.length + " longs instead of " + 2); s0 = state[0]; s1 = state[1]; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy