All Downloads are FREE. Search and download functionalities are using the official Maven repository.

drv.Iterators.drv Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists, and queues with a small memory footprint and fast operations; it provides also big (64-bit) arrays, sets, and lists, sorting algorithms, fast, practical I/O classes for binary and text files, and facilities for memory mapping large files. This jar (fastutil-core.jar) contains data structures based on integers, longs, doubles, and objects, only; fastutil.jar contains all classes. If you have both jars in your dependencies, this jar should be excluded.

There is a newer version: 8.5.15
Show newest version
/*
 * Copyright (C) 2002-2022 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


package PACKAGE;

import static it.unimi.dsi.fastutil.BigArrays.grow;
import static it.unimi.dsi.fastutil.BigArrays.length;
import static it.unimi.dsi.fastutil.BigArrays.set;
import static it.unimi.dsi.fastutil.BigArrays.trim;

import java.util.Iterator;
import java.util.ListIterator;
import java.util.NoSuchElementException;
import java.util.Objects;
import java.util.function.Consumer;
#if KEYS_PRIMITIVE && ! KEY_CLASS_Boolean
import java.util.PrimitiveIterator;
#if KEYS_BYTE_CHAR_SHORT_FLOAT
import WIDENED_PACKAGE.KEY_WIDENED_ITERATOR;
import WIDENED_PACKAGE.WIDENED_ITERATORS;
#endif
#endif

#if KEYS_REFERENCE
import java.util.function.Predicate;
#endif

/** A class providing static methods and objects that do useful things with type-specific iterators.
 *
 * @see Iterator
 */

public final class ITERATORS {

	private ITERATORS() {}

	/** A class returning no elements and a type-specific iterator interface.
	 *
	 * 

This class may be useful to implement your own in case you subclass * a type-specific iterator. */ public static class EmptyIterator KEY_GENERIC implements KEY_LIST_ITERATOR KEY_GENERIC, java.io.Serializable, Cloneable { private static final long serialVersionUID = -7046029254386353129L; protected EmptyIterator() {} @Override public boolean hasNext() { return false; } @Override public boolean hasPrevious() { return false; } @Override public KEY_GENERIC_TYPE NEXT_KEY() { throw new NoSuchElementException(); } @Override public KEY_GENERIC_TYPE PREV_KEY() { throw new NoSuchElementException(); } @Override public int nextIndex() { return 0; } @Override public int previousIndex() { return -1; } @Override public int skip(int n) { return 0; } @Override public int back(int n) { return 0; } #if KEYS_PRIMITIVE @Override public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { } #endif DEPRECATED_IF_KEYS_PRIMITIVE @Override public void forEachRemaining(final Consumer action) { } @Override public Object clone() { return EMPTY_ITERATOR; } private Object readResolve() { return EMPTY_ITERATOR; } } /** An empty iterator. It is serializable and cloneable. * *

The class of this objects represent an abstract empty iterator * that can iterate as a type-specific (list) iterator. */ SUPPRESS_WARNINGS_KEY_RAWTYPES public static final EmptyIterator EMPTY_ITERATOR = new EmptyIterator(); #if KEYS_REFERENCE /** Returns an empty iterator. It is serializable and cloneable. * *

The class of the object returned represent an abstract empty iterator * that can iterate as a type-specific (list) iterator. * *

This method provides a typesafe access to {@link #EMPTY_ITERATOR}. * @return an empty iterator. */ @SuppressWarnings("unchecked") public static KEY_GENERIC KEY_ITERATOR KEY_GENERIC emptyIterator() { return EMPTY_ITERATOR; } #endif /** An iterator returning a single element. */ private static class SingletonIterator KEY_GENERIC implements KEY_LIST_ITERATOR KEY_GENERIC { private final KEY_GENERIC_TYPE element; private byte curr; public SingletonIterator(final KEY_GENERIC_TYPE element) { this.element = element; } @Override public boolean hasNext() { return curr == 0; } @Override public boolean hasPrevious() { return curr == 1; } @Override public KEY_GENERIC_TYPE NEXT_KEY() { if (! hasNext()) throw new NoSuchElementException(); curr = 1; return element; } @Override public KEY_GENERIC_TYPE PREV_KEY() { if (! hasPrevious()) throw new NoSuchElementException(); curr = 0; return element; } @Override #if KEYS_PRIMITIVE public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { #else // ! KEY_PRIMITIVE == KEY_REFERENCE public void forEachRemaining(final Consumer action) { #endif Objects.requireNonNull(action); if (curr == 0) { action.accept(element); curr = 1; } } @Override public int nextIndex() { return curr; } @Override public int previousIndex() { return curr - 1; } @Override public int back(int n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); if (n == 0 || curr < 1) return 0; curr = 1; return 1; } @Override public int skip(int n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); if (n == 0 || curr > 0) return 0; curr = 0; return 1; } } /** Returns an immutable iterator that iterates just over the given element. * * @param element the only element to be returned by a type-specific list iterator. * @return an immutable iterator that iterates just over {@code element}. */ public static KEY_GENERIC KEY_LIST_ITERATOR KEY_GENERIC singleton(final KEY_GENERIC_TYPE element) { return new SingletonIterator KEY_GENERIC_DIAMOND(element); } /** A class to wrap arrays in iterators. */ private static class ArrayIterator KEY_GENERIC implements KEY_LIST_ITERATOR KEY_GENERIC { private final KEY_GENERIC_TYPE[] array; private final int offset, length; private int curr; public ArrayIterator(final KEY_GENERIC_TYPE[] array, final int offset, final int length) { this.array = array; this.offset = offset; this.length = length; } @Override public boolean hasNext() { return curr < length; } @Override public boolean hasPrevious() { return curr > 0; } @Override public KEY_GENERIC_TYPE NEXT_KEY() { if (! hasNext()) throw new NoSuchElementException(); return array[offset + curr++]; } @Override public KEY_GENERIC_TYPE PREV_KEY() { if (! hasPrevious()) throw new NoSuchElementException(); return array[offset + --curr]; } @Override #if KEYS_PRIMITIVE public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { #else // ! KEY_PRIMITIVE == KEY_REFERENCE public void forEachRemaining(final Consumer action) { #endif Objects.requireNonNull(action); for (; curr < length; ++curr) { action.accept(array[offset + curr]); } } @Override public int skip(int n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); if (n <= length - curr) { curr += n; return n; } n = length - curr; curr = length; return n; } @Override public int back(int n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); if (n <= curr) { curr -= n; return n; } n = curr; curr = 0; return n; } @Override public int nextIndex() { return curr; } @Override public int previousIndex() { return curr - 1; } } /** Wraps the given part of an array into a type-specific list iterator. * *

The type-specific list iterator returned by this method will iterate * {@code length} times, returning consecutive elements of the given * array starting from the one with index {@code offset}. * * @param array an array to wrap into a type-specific list iterator. * @param offset the first element of the array to be returned. * @param length the number of elements to return. * @return an iterator that will return {@code length} elements of {@code array} starting at position {@code offset}. */ public static KEY_GENERIC KEY_LIST_ITERATOR KEY_GENERIC wrap(final KEY_GENERIC_TYPE[] array, final int offset, final int length) { ARRAYS.ensureOffsetLength(array, offset, length); return new ArrayIterator KEY_GENERIC_DIAMOND(array, offset, length); } /** Wraps the given array into a type-specific list iterator. * *

The type-specific list iterator returned by this method will return * all elements of the given array. * * @param array an array to wrap into a type-specific list iterator. * @return an iterator that will return the elements of {@code array}. */ public static KEY_GENERIC KEY_LIST_ITERATOR KEY_GENERIC wrap(final KEY_GENERIC_TYPE[] array) { return new ArrayIterator KEY_GENERIC_DIAMOND(array, 0, array.length); } /** Unwraps an iterator into an array starting at a given offset for a given number of elements. * *

This method iterates over the given type-specific iterator and stores the elements * returned, up to a maximum of {@code length}, in the given array starting at {@code offset}. * The number of actually unwrapped elements is returned (it may be less than {@code max} if * the iterator emits less than {@code max} elements). * * @param i a type-specific iterator. * @param array an array to contain the output of the iterator. * @param offset the first element of the array to be returned. * @param max the maximum number of elements to unwrap. * @return the number of elements unwrapped. */ public static KEY_GENERIC int unwrap(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, final KEY_GENERIC_TYPE array[], int offset, final int max) { if (max < 0) throw new IllegalArgumentException("The maximum number of elements (" + max + ") is negative"); if (offset < 0 || offset + max > array.length) throw new IllegalArgumentException(); int j = max; while(j-- != 0 && i.hasNext()) array[offset++] = i.NEXT_KEY(); return max - j - 1; } /** Unwraps an iterator into an array. * *

This method iterates over the given type-specific iterator and stores the * elements returned in the given array. The iteration will stop when the * iterator has no more elements or when the end of the array has been reached. * * @param i a type-specific iterator. * @param array an array to contain the output of the iterator. * @return the number of elements unwrapped. */ public static KEY_GENERIC int unwrap(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, final KEY_GENERIC_TYPE array[]) { return unwrap(i, array, 0, array.length); } /** Unwraps an iterator, returning an array, with a limit on the number of elements. * *

This method iterates over the given type-specific iterator and returns an array * containing the elements returned by the iterator. At most {@code max} elements * will be returned. * * @param i a type-specific iterator. * @param max the maximum number of elements to be unwrapped. * @return an array containing the elements returned by the iterator (at most {@code max}). */ SUPPRESS_WARNINGS_KEY_UNCHECKED public static KEY_GENERIC KEY_GENERIC_TYPE[] unwrap(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, int max) { if (max < 0) throw new IllegalArgumentException("The maximum number of elements (" + max + ") is negative"); KEY_GENERIC_TYPE array[] = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[16]; int j = 0; while(max-- != 0 && i.hasNext()) { if (j == array.length) array = ARRAYS.grow(array, j + 1); array[j++] = i.NEXT_KEY(); } return ARRAYS.trim(array, j); } /** Unwraps an iterator, returning an array. * *

This method iterates over the given type-specific iterator and returns an array * containing the elements returned by the iterator. * * @param i a type-specific iterator. * @return an array containing the elements returned by the iterator. */ public static KEY_GENERIC KEY_GENERIC_TYPE[] unwrap(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i) { return unwrap(i, Integer.MAX_VALUE); } /** Unwraps an iterator into a big array starting at a given offset for a given number of elements. * *

This method iterates over the given type-specific iterator and stores the elements * returned, up to a maximum of {@code length}, in the given big array starting at {@code offset}. * The number of actually unwrapped elements is returned (it may be less than {@code max} if * the iterator emits less than {@code max} elements). * * @param i a type-specific iterator. * @param array a big array to contain the output of the iterator. * @param offset the first element of the array to be returned. * @param max the maximum number of elements to unwrap. * @return the number of elements unwrapped. */ public static KEY_GENERIC long unwrap(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, final KEY_GENERIC_TYPE array[][], long offset, final long max) { if (max < 0) throw new IllegalArgumentException("The maximum number of elements (" + max + ") is negative"); if (offset < 0 || offset + max > length(array)) throw new IllegalArgumentException(); long j = max; while(j-- != 0 && i.hasNext()) set(array, offset++, i.NEXT_KEY()); return max - j - 1; } /** Unwraps an iterator into a big array. * *

This method iterates over the given type-specific iterator and stores the * elements returned in the given big array. The iteration will stop when the * iterator has no more elements or when the end of the array has been reached. * * @param i a type-specific iterator. * @param array a big array to contain the output of the iterator. * @return the number of elements unwrapped. */ public static KEY_GENERIC long unwrap(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, final KEY_GENERIC_TYPE array[][]) { return unwrap(i, array, 0, length(array)); } /** Unwraps an iterator into a type-specific collection, with a limit on the number of elements. * *

This method iterates over the given type-specific iterator and stores the elements * returned, up to a maximum of {@code max}, in the given type-specific collection. * The number of actually unwrapped elements is returned (it may be less than {@code max} if * the iterator emits less than {@code max} elements). * * @param i a type-specific iterator. * @param c a type-specific collection array to contain the output of the iterator. * @param max the maximum number of elements to unwrap. * @return the number of elements unwrapped. Note that * this is the number of elements returned by the iterator, which is not necessarily the number * of elements that have been added to the collection (because of duplicates). */ public static KEY_GENERIC int unwrap(final STD_KEY_ITERATOR KEY_GENERIC i, final COLLECTION KEY_SUPER_GENERIC c, final int max) { if (max < 0) throw new IllegalArgumentException("The maximum number of elements (" + max + ") is negative"); int j = max; while(j-- != 0 && i.hasNext()) c.add(i.NEXT_KEY()); return max - j - 1; } /** Unwraps an iterator, returning a big array, with a limit on the number of elements. * *

This method iterates over the given type-specific iterator and returns a big array * containing the elements returned by the iterator. At most {@code max} elements * will be returned. * * @param i a type-specific iterator. * @param max the maximum number of elements to be unwrapped. * @return a big array containing the elements returned by the iterator (at most {@code max}). */ SUPPRESS_WARNINGS_KEY_UNCHECKED public static KEY_GENERIC KEY_GENERIC_TYPE[][] unwrapBig(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, long max) { if (max < 0) throw new IllegalArgumentException("The maximum number of elements (" + max + ") is negative"); KEY_GENERIC_TYPE array[][] = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray(16); long j = 0; while(max-- != 0 && i.hasNext()) { if (j == length(array)) array = grow(array, j + 1); set(array, j++, i.NEXT_KEY()); } return trim(array, j); } /** Unwraps an iterator, returning a big array. * *

This method iterates over the given type-specific iterator and returns a big array * containing the elements returned by the iterator. * * @param i a type-specific iterator. * @return a big array containing the elements returned by the iterator. */ public static KEY_GENERIC KEY_GENERIC_TYPE[][] unwrapBig(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i) { return unwrapBig(i, Long.MAX_VALUE); } /** Unwraps an iterator into a type-specific collection. * *

This method iterates over the given type-specific iterator and stores the * elements returned in the given type-specific collection. The returned count on the number * unwrapped elements is a long, so that it will work also with very large collections. * * @param i a type-specific iterator. * @param c a type-specific collection to contain the output of the iterator. * @return the number of elements unwrapped. Note that * this is the number of elements returned by the iterator, which is not necessarily the number * of elements that have been added to the collection (because of duplicates). */ public static KEY_GENERIC long unwrap(final STD_KEY_ITERATOR KEY_GENERIC i, final COLLECTION KEY_SUPER_GENERIC c) { long n = 0; while(i.hasNext()) { c.add(i.NEXT_KEY()); n++; } return n; } /** Pours an iterator into a type-specific collection, with a limit on the number of elements. * *

This method iterates over the given type-specific iterator and adds * the returned elements to the given collection (up to {@code max}). * * @param i a type-specific iterator. * @param s a type-specific collection. * @param max the maximum number of elements to be poured. * @return the number of elements poured. Note that * this is the number of elements returned by the iterator, which is not necessarily the number * of elements that have been added to the collection (because of duplicates). */ public static KEY_GENERIC int pour(final STD_KEY_ITERATOR KEY_GENERIC i, final COLLECTION KEY_SUPER_GENERIC s, final int max) { if (max < 0) throw new IllegalArgumentException("The maximum number of elements (" + max + ") is negative"); int j = max; while(j-- != 0 && i.hasNext()) s.add(i.NEXT_KEY()); return max - j - 1; } /** Pours an iterator into a type-specific collection. * *

This method iterates over the given type-specific iterator and adds * the returned elements to the given collection. * * @param i a type-specific iterator. * @param s a type-specific collection. * @return the number of elements poured. Note that * this is the number of elements returned by the iterator, which is not necessarily the number * of elements that have been added to the collection (because of duplicates). */ public static KEY_GENERIC int pour(final STD_KEY_ITERATOR KEY_GENERIC i, final COLLECTION KEY_SUPER_GENERIC s) { return pour(i, s, Integer.MAX_VALUE); } /** Pours an iterator, returning a type-specific list, with a limit on the number of elements. * *

This method iterates over the given type-specific iterator and returns * a type-specific list containing the returned elements (up to {@code max}). Iteration * on the returned list is guaranteed to produce the elements in the same order * in which they appeared in the iterator. * * * @param i a type-specific iterator. * @param max the maximum number of elements to be poured. * @return a type-specific list containing the returned elements, up to {@code max}. */ public static KEY_GENERIC LIST KEY_GENERIC pour(final STD_KEY_ITERATOR KEY_GENERIC i, int max) { final ARRAY_LIST KEY_GENERIC l = new ARRAY_LIST KEY_GENERIC_DIAMOND(); pour(i, l, max); l.trim(); return l; } /** Pours an iterator, returning a type-specific list. * *

This method iterates over the given type-specific iterator and returns * a list containing the returned elements. Iteration * on the returned list is guaranteed to produce the elements in the same order * in which they appeared in the iterator. * * @param i a type-specific iterator. * @return a type-specific list containing the returned elements. */ public static KEY_GENERIC LIST KEY_GENERIC pour(final STD_KEY_ITERATOR KEY_GENERIC i) { return pour(i, Integer.MAX_VALUE); } private static class IteratorWrapper KEY_GENERIC implements KEY_ITERATOR KEY_GENERIC { final Iterator i; public IteratorWrapper(final Iterator i) { this.i = i; } @Override public boolean hasNext() { return i.hasNext(); } @Override public void remove() { i.remove(); } @Override public KEY_GENERIC_TYPE NEXT_KEY() { return KEY_CLASS2TYPE(i.next()); } #if KEYS_INT_LONG_DOUBLE // This is pretty much the only time overriding this overload is correct; we want to // delegate as an Object consumer, not wrap it as a primitive one. @Override public void forEachRemaining(final KEY_CONSUMER action) { i.forEachRemaining(action); } #endif #if KEYS_PRIMITIVE #if KEYS_INT_LONG_DOUBLE @SuppressWarnings("unchecked") #endif @Override public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { #if KEYS_INT_LONG_DOUBLE // The JDK's IntConsumer is not a subclass of Consumer, so we need another lambda. Objects.requireNonNull(action); i.forEachRemaining(action instanceof Consumer ? (Consumer)action : action::accept); #else i.forEachRemaining(action); #endif } #endif DEPRECATED_IF_KEYS_PRIMITIVE @Override public void forEachRemaining(final Consumer action) { i.forEachRemaining(action); } } #if KEYS_PRIMITIVE && ! KEY_CLASS_Boolean private static class PrimitiveIteratorWrapper KEY_GENERIC implements KEY_ITERATOR KEY_GENERIC { final JDK_PRIMITIVE_ITERATOR i; public PrimitiveIteratorWrapper(JDK_PRIMITIVE_ITERATOR i) { this.i = i; } @Override public boolean hasNext() { return i.hasNext(); } @Override public void remove() { i.remove(); } @Override #if KEYS_INT_LONG_DOUBLE public KEY_GENERIC_TYPE NEXT_KEY() { return i.NEXT_KEY_WIDENED(); } #else public KEY_GENERIC_TYPE NEXT_KEY() { return (KEY_GENERIC_TYPE)i.NEXT_KEY_WIDENED(); } #endif @Override public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { i.forEachRemaining(action); } } #endif #if KEYS_BYTE_CHAR_SHORT_FLOAT private static class CheckedPrimitiveIteratorWrapper KEY_GENERIC extends PrimitiveIteratorWrapper { public CheckedPrimitiveIteratorWrapper(JDK_PRIMITIVE_ITERATOR i) { super(i); } @Override public KEY_GENERIC_TYPE NEXT_KEY() { return KEY_NARROWING(i.NEXT_KEY_WIDENED()); } @Override public void forEachRemaining(final KEY_CONSUMER action) { i.forEachRemaining((JDK_PRIMITIVE_KEY_CONSUMER)(KEY_GENERIC_TYPE_WIDENED value) -> { action.accept(KEY_NARROWING(value)); }); } } #endif /** Wraps a standard iterator into a type-specific iterator. * *

This method wraps a standard iterator into a type-specific one which will handle the * type conversions for you. Of course, any attempt to wrap an iterator returning the * instances of the wrong class will generate a {@link ClassCastException}. The * returned iterator is backed by {@code i}: changes to one of the iterators * will affect the other, too. * * @implNote If {@code i} is already type-specific, it will returned and no new object * will be generated. * * @param i an iterator. * @return a type-specific iterator backed by {@code i}. */ #if KEYS_PRIMITIVE @SuppressWarnings({"unchecked","rawtypes"}) #endif public static KEY_GENERIC KEY_ITERATOR KEY_GENERIC AS_KEY_ITERATOR(final Iterator KEY_GENERIC i) { if (i instanceof KEY_ITERATOR) return (KEY_ITERATOR KEY_GENERIC)i; #if KEYS_INT_LONG_DOUBLE if (i instanceof JDK_PRIMITIVE_ITERATOR) return new PrimitiveIteratorWrapper KEY_GENERIC_DIAMOND((JDK_PRIMITIVE_ITERATOR)i); #endif return new IteratorWrapper KEY_GENERIC_DIAMOND(i); } #if KEYS_BYTE_CHAR_SHORT_FLOAT /** Wrap a JDK primitive iterator to a type-specific iterator, making checked * narrowed casts. * * @implNote The {@code next} method throws {@link IllegalArgumentException} if any element would underflow or overflow. * * @param i an iterator. * @return a type-specific iterator backed by {@code i}. * @since 8.5.0 */ public static KEY_GENERIC KEY_ITERATOR KEY_GENERIC narrow(final JDK_PRIMITIVE_ITERATOR i) { return new CheckedPrimitiveIteratorWrapper KEY_GENERIC_DIAMOND(i); } #endif #if KEYS_BYTE_CHAR_SHORT_FLOAT /** Wrap a JDK primitive iterator to a type-specific iterator, making unchecked * narrowing casts. * *

No test is done for overflow or underflow. * * @param i an iterator. * @return a type-specific iterator backed by {@code i}. * @since 8.5.0 */ public static KEY_GENERIC KEY_ITERATOR KEY_GENERIC uncheckedNarrow(final JDK_PRIMITIVE_ITERATOR i) { return new PrimitiveIteratorWrapper KEY_GENERIC_DIAMOND(i); } #endif #if KEYS_BYTE_CHAR_SHORT_FLOAT #if KEY_CLASS_Character /** Wrap a type-specific iterator to a JDK compatible primitive iterator. * *

WARNING: This is not the same as converting the source to a sequence * of code points. This returned instance literally performs {@code (int)(charValue)} casts. * Surrogate pairs will be left as separate elements instead of combined into a single element * with the code point it represents. See {@link Character} for more discussion on code points, * char values, and surrogate pairs. * * @param i an iterator * @return a JDK compatible primitive iterator backed by {@code i} * @since 8.5.0 */ #else /** Wrap a type-specific iterator to a JDK compatible primitive iterator. * * @param i an iterator * @return a JDK compatible primitive iterator backed by {@code i} * @since 8.5.0 */ #endif public static KEY_WIDENED_ITERATOR widen(KEY_ITERATOR i) { return WIDENED_ITERATORS.wrap(i); } #endif private static class ListIteratorWrapper KEY_GENERIC implements KEY_LIST_ITERATOR KEY_GENERIC { final ListIterator i; public ListIteratorWrapper(final ListIterator i) { this.i = i; } @Override public boolean hasNext() { return i.hasNext(); } @Override public boolean hasPrevious() { return i.hasPrevious(); } @Override public int nextIndex() { return i.nextIndex(); } @Override public int previousIndex() { return i.previousIndex(); } @Override public void set(KEY_GENERIC_TYPE k) { i.set(KEY2OBJ(k)); } @Override public void add(KEY_GENERIC_TYPE k) { i.add(KEY2OBJ(k)); } @Override public void remove() { i.remove(); } @Override public KEY_GENERIC_TYPE NEXT_KEY() { return KEY_CLASS2TYPE(i.next()); } @Override public KEY_GENERIC_TYPE PREV_KEY() { return KEY_CLASS2TYPE(i.previous()); } #if KEYS_INT_LONG_DOUBLE // This is pretty much the only time overriding this overload is correct; we want to // delegate as an Object consumer, not wrap it as a primitive one. @Override public void forEachRemaining(final KEY_CONSUMER action) { i.forEachRemaining(action); } #endif #if KEYS_PRIMITIVE #if KEYS_INT_LONG_DOUBLE @SuppressWarnings("unchecked") #endif @Override public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { #if KEYS_INT_LONG_DOUBLE // The JDK's IntConsumer is not a subclass of Consumer, so we another lambda. Objects.requireNonNull(action); i.forEachRemaining(action instanceof Consumer ? (Consumer)action : action::accept); #else i.forEachRemaining(action); #endif } #endif DEPRECATED_IF_KEYS_PRIMITIVE @Override public void forEachRemaining(final Consumer action) { i.forEachRemaining(action); } } /** Wraps a standard list iterator into a type-specific list iterator. * *

This method wraps a standard list iterator into a type-specific one * which will handle the type conversions for you. Of course, any attempt * to wrap an iterator returning the instances of the wrong class will * generate a {@link ClassCastException}. The * returned iterator is backed by {@code i}: changes to one of the iterators * will affect the other, too. * *

If {@code i} is already type-specific, it will returned and no new object * will be generated. * * @param i a list iterator. * @return a type-specific list iterator backed by {@code i}. */ #if KEYS_PRIMITIVE @SuppressWarnings({"unchecked","rawtypes"}) #endif public static KEY_GENERIC KEY_LIST_ITERATOR KEY_GENERIC AS_KEY_ITERATOR(final ListIterator KEY_GENERIC i) { if (i instanceof KEY_LIST_ITERATOR) return (KEY_LIST_ITERATOR KEY_GENERIC)i; return new ListIteratorWrapper KEY_GENERIC_DIAMOND(i); } /** * Returns whether an element returned by the given iterator satisfies the given predicate. *

Short circuit evaluation is performed; the first {@code true} from the predicate terminates the loop. * @return true if an element returned by {@code iterator} satisfies {@code predicate}. */ public static KEY_GENERIC boolean any(final STD_KEY_ITERATOR KEY_GENERIC iterator, final METHOD_ARG_PREDICATE predicate) { return indexOf(iterator, predicate) != -1; } #if KEYS_BYTE_CHAR_SHORT_FLOAT /** * Returns whether an element returned by the given iterator satisfies the given predicate. *

Short circuit evaluation is performed; the first {@code true} from the predicate terminates the loop. * @return true if an element returned by {@code iterator} satisfies {@code predicate}. * lambda to perform widening casts. Please use the type-specific overload to avoid this overhead. */ public static KEY_GENERIC boolean any(final KEY_ITERATOR KEY_GENERIC iterator, final JDK_PRIMITIVE_PREDICATE predicate) { return any(iterator, predicate instanceof METHOD_ARG_PREDICATE ? (METHOD_ARG_PREDICATE) predicate : (METHOD_ARG_PREDICATE) predicate::test); } #endif /** * Returns whether all elements returned by the given iterator satisfy the given predicate. *

Short circuit evaluation is performed; the first {@code false} from the predicate terminates the loop. * @return true if all elements returned by {@code iterator} satisfy {@code predicate}. */ public static KEY_GENERIC boolean all(final STD_KEY_ITERATOR KEY_GENERIC iterator, final METHOD_ARG_PREDICATE predicate) { Objects.requireNonNull(predicate); do { if (!iterator.hasNext()) return true; } while (predicate.test(iterator.NEXT_KEY())); return false; } #if KEYS_BYTE_CHAR_SHORT_FLOAT /** * Returns whether all elements returned by the given iterator satisfy the given predicate. *

Short circuit evaluation is performed; the first {@code false} from the predicate terminates the loop. * @return true if all elements returned by {@code iterator} satisfy {@code predicate}. * @implNote Unless the argument is type-specific, this method will introduce an intermediary * lambda to perform widening casts. Please use the type-specific overload to avoid this overhead. */ public static KEY_GENERIC boolean all(final KEY_ITERATOR KEY_GENERIC iterator, final JDK_PRIMITIVE_PREDICATE predicate) { return all(iterator, predicate instanceof METHOD_ARG_PREDICATE ? (METHOD_ARG_PREDICATE) predicate : (METHOD_ARG_PREDICATE) predicate::test); } #endif /** * Returns the index of the first element returned by the given iterator that satisfies the given predicate, or −1 if * no such element was found. *

The next element returned by the iterator always considered element 0, even for * {@link java.util.ListIterator ListIterators}. In other words {@link java.util.ListIterator#nextIndex * ListIterator.nextIndex} is ignored. * @return the index of the first element returned by {@code iterator} that satisfies {@code predicate}, or −1 if * no such element was found. */ public static KEY_GENERIC int indexOf(final STD_KEY_ITERATOR KEY_GENERIC iterator, final METHOD_ARG_PREDICATE predicate) { Objects.requireNonNull(predicate); for (int i = 0; iterator.hasNext(); ++i) { if (predicate.test(iterator.NEXT_KEY())) return i; } return -1; } #if KEYS_BYTE_CHAR_SHORT_FLOAT /** * Returns the index of the first element returned by the given iterator that satisfies the given predicate, or −1 if * no such element was found. *

The next element returned by the iterator always considered element 0, even for * {@link java.util.ListIterator ListIterators}. In other words {@link java.util.ListIterator#nextIndex * ListIterator.nextIndex} is ignored. * @return the index of the first element returned by {@code iterator} that satisfies {@code predicate}, or −1 if * no such element was found. * @implNote Unless the argument is type-specific, this method will introduce an intermediary * lambda to perform widening casts. Please use the type-specific overload to avoid this overhead. */ public static KEY_GENERIC int indexOf(final KEY_ITERATOR KEY_GENERIC iterator, final JDK_PRIMITIVE_PREDICATE predicate) { return indexOf(iterator, predicate instanceof METHOD_ARG_PREDICATE ? (METHOD_ARG_PREDICATE) predicate : (METHOD_ARG_PREDICATE) predicate::test); } #endif /** * A skeletal implementation for an iterator backed by an index-based data store. High performance * concrete implementations (like the main Iterator of ArrayList) generally should avoid using this * and just implement the interface directly, but should be decent for less * performance critical implementations. * *

This class is only appropriate for sequences that are at most {@link Integer#MAX_VALUE} long. * If your backing data store can be bigger then this, consider the equivalently named class in * the type specific {@code BigListIterators} class. * *

As the abstract methods in this class are used in inner loops, it is generally a * good idea to override the class as {@code final} as to encourage the JVM to inline * them (or alternatively, override the abstract methods as final). */ public static abstract class AbstractIndexBasedIterator KEY_GENERIC extends KEY_ABSTRACT_ITERATOR KEY_GENERIC { /** The minimum pos can be, and is the logical start of the "range". * Usually set to the initialPos unless it is a ListIterator, in which case it can vary. * * There isn't any way for a range to shift its beginning like the end can (through {@link #remove}), * so this is final. */ protected final int minPos; /** The current position index, the index of the item to be returned after the next call to {@link #next()}. * *

This value will be between {@code minPos} and {@link #getMaxPos()} (exclusive) (on a best effort, so concurrent * structural modifications outside this iterator may cause this to be violated, but that usually invalidates * iterators anyways). Thus {@code pos} being {@code minPos + 2} would mean {@link #next()} * was called twice and the next call will return the third element of this iterator. */ protected int pos; /** The last returned index by a call to {@link #next} or, if a list-iterator, {@link java.util.ListIterator#previous(). * * It is −1 if no such call has occurred or a mutation has occurred through this iterator and no * advancement has been done. */ protected int lastReturned; protected AbstractIndexBasedIterator(int minPos, int initialPos) { this.minPos = minPos; this.pos = initialPos; } // When you implement these, you should probably declare them final to encourage the JVM to inline them. /** Get the item corresponding to the given index location. * *

Do not advance {@link #pos} in this method; the default {@code next} method takes care of this. * *

The {@code location} given will be between {@code minPos} and {@link #getMaxPos()} (exclusive). * Thus, a {@code location} of {@code minPos + 2} would mean {@link #next()} was called twice * and this method should return what the next call to {@link #next()} should return. */ protected abstract KEY_GENERIC_TYPE get(int location); /** Remove the item at the given index. * *

Do not modify {@link #pos} in this method; the default {@code #remove()} method takes care of this. * *

This method should also do what is needed to track the change to the {@link #getMaxPos}. * Usually this is accomplished by having this method call the parent {@link Collection}'s appropriate remove * method, and having {@link #getMaxPos} track the parent {@linkplain Collection#size() collection's size}. */ protected abstract void remove(int location); /** The maximum pos can be, and is the logical end (exclusive) of the "range". * *

If pos is equal to the return of this method, this means the last element has been returned and the next call to {@link #next()} will throw. * *

Usually set return the parent {@linkplain Collection#size() collection's size}, but does not have to be * (for example, sublists and subranges). */ protected abstract int getMaxPos(); @Override public boolean hasNext() { return pos < getMaxPos(); } @Override public KEY_GENERIC_TYPE NEXT_KEY() { if (! hasNext()) throw new NoSuchElementException(); return get(lastReturned = pos++); } @Override public void remove() { if (lastReturned == -1) throw new IllegalStateException(); remove(lastReturned); /* If the last operation was a next(), we are removing an element *before* us, and we must decrease pos correspondingly. */ if (lastReturned < pos) pos--; lastReturned = -1; } @Override public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { while(pos < getMaxPos()) { action.accept(get(lastReturned = pos++)); } } // TODO since this method doesn't depend on the type at all, should it be "hoisted" into a // non type-specific superclass in it.unimi.dsi.fastutil? @Override public int skip(int n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); final int max = getMaxPos(); final int remaining = max - pos; if (n < remaining) { pos += n; } else { n = remaining; pos = max; } lastReturned = pos - 1; return n; } } /** * A skeletal implementation for a list-iterator backed by an index-based data store. High performance * concrete implementations (like the main ListIterator of ArrayList) generally should avoid using this * and just implement the interface directly, but should be decent for less * performance critical implementations. * *

This class is only appropriate for sequences that are at most {@link Integer#MAX_VALUE} long. * If your backing data store can be bigger then this, consider the equivalently named class in * the type specific {@code BigListSpliterators} class. * *

As the abstract methods in this class are used in inner loops, it is generally a * good idea to override the class as {@code final} as to encourage the JVM to inline * them (or alternatively, override the abstract methods as final). */ public static abstract class AbstractIndexBasedListIterator KEY_GENERIC extends AbstractIndexBasedIterator KEY_GENERIC implements KEY_LIST_ITERATOR KEY_GENERIC { protected AbstractIndexBasedListIterator(int minPos, int initialPos) { super(minPos, initialPos); } // When you implement these, you should probably declare them final to encourage the JVM to inline them. /** Add the given item at the given index. * *

This method should also do what is needed to track the change to the {@link #getMaxPos}. * Usually this is accomplished by having this method call the parent {@link Collection}'s appropriate add * method, and having {@link #getMaxPos} track the parent {@linkplain Collection#size() collection's size}. * *

Do not modify {@link #pos} in this method; the default {@code #add()} method takes care of this. * *

See {@link #pos} and {@link #get(int)} for discussion on what the location means. */ protected abstract void add(int location, KEY_GENERIC_TYPE k); /** Sets the given item at the given index. * *

See {@link #pos} and {@link #get(int)} for discussion on what the location means. */ protected abstract void set(int location, KEY_GENERIC_TYPE k); @Override public boolean hasPrevious() { return pos > minPos; } @Override public KEY_GENERIC_TYPE PREV_KEY() { if (! hasPrevious()) throw new NoSuchElementException(); return get(lastReturned = --pos); } @Override public int nextIndex() { return pos; } @Override public int previousIndex() { return pos - 1; } @Override public void add(final KEY_GENERIC_TYPE k) { add(pos++, k); lastReturned = -1; } @Override public void set(final KEY_GENERIC_TYPE k) { if (lastReturned == -1) throw new IllegalStateException(); set(lastReturned, k); } // TODO since this method doesn't depend on the type at all, should it be "hoisted" into a // non type-specific superclass in it.unimi.dsi.fastutil? @Override public int back(int n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); final int remaining = pos - minPos; if (n < remaining) { pos -= n; } else { n = remaining; pos = minPos; } lastReturned = pos; return n; } } #if KEY_CLASS_Integer || KEY_CLASS_Byte || KEY_CLASS_Short || KEY_CLASS_Character || KEY_CLASS_Long #if KEY_CLASS_Long private static class IntervalIterator implements KEY_BIDI_ITERATOR { #else private static class IntervalIterator implements KEY_LIST_ITERATOR { #endif private final KEY_TYPE from, to; KEY_TYPE curr; public IntervalIterator(final KEY_TYPE from, final KEY_TYPE to) { this.from = this.curr = from; this.to = to; } @Override public boolean hasNext() { return curr < to; } @Override public boolean hasPrevious() { return curr > from; } @Override public KEY_TYPE NEXT_KEY() { if (! hasNext()) throw new NoSuchElementException(); return curr++; } @Override public KEY_TYPE PREV_KEY() { if (! hasPrevious()) throw new NoSuchElementException(); return --curr; } @Override #if KEYS_PRIMITIVE public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { #else // ! KEY_PRIMITIVE == KEY_REFERENCE public void forEachRemaining(final Consumer action) { #endif Objects.requireNonNull(action); for (; curr < to; ++curr) { action.accept(curr); } } #if ! KEY_CLASS_Long @Override public int nextIndex() { return curr - from; } @Override public int previousIndex() { return curr - from - 1; } #endif @Override public int skip(int n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); if (curr + n <= to) { curr += n; return n; } #if ! KEY_CLASS_Long n = to - curr; #else n = (int)(to - curr); #endif curr = to; return n; } @Override public int back(int n) { if (curr - n >= from) { curr -= n; return n; } #if ! KEY_CLASS_Long n = curr - from ; #else n = (int)(curr - from); #endif curr = from; return n; } } #if KEY_CLASS_Long /** Creates a type-specific bidirectional iterator over an interval. * *

The type-specific bidirectional iterator returned by this method will return the * elements {@code from}, {@code from+1},…, {@code to-1}. * *

Note that all other type-specific interval iterator are list * iterators. Of course, this is not possible with longs as the index * returned by {@link java.util.ListIterator#nextIndex() nextIndex()}/{@link * java.util.ListIterator#previousIndex() previousIndex()} would exceed an integer. * * @param from the starting element (inclusive). * @param to the ending element (exclusive). * @return a type-specific bidirectional iterator enumerating the elements from {@code from} to {@code to}. */ public static KEY_BIDI_ITERATOR fromTo(final KEY_TYPE from, final KEY_TYPE to) { return new IntervalIterator(from, to); } #else /** Creates a type-specific list iterator over an interval. * *

The type-specific list iterator returned by this method will return the * elements {@code from}, {@code from+1},…, {@code to-1}. * * @param from the starting element (inclusive). * @param to the ending element (exclusive). * @return a type-specific list iterator enumerating the elements from {@code from} to {@code to}. */ public static KEY_LIST_ITERATOR fromTo(final KEY_TYPE from, final KEY_TYPE to) { return new IntervalIterator(from, to); } #endif #endif private static class IteratorConcatenator KEY_GENERIC implements KEY_ITERATOR KEY_GENERIC { final KEY_ITERATOR KEY_EXTENDS_GENERIC a[]; int offset, length, lastOffset = -1; public IteratorConcatenator(final KEY_ITERATOR KEY_EXTENDS_GENERIC a[], int offset, int length) { this.a = a; this.offset = offset; this.length = length; advance(); } private void advance() { while(length != 0) { if (a[offset].hasNext()) break; length--; offset++; } return; } @Override public boolean hasNext() { return length > 0; } @Override public KEY_GENERIC_TYPE NEXT_KEY() { if (! hasNext()) throw new NoSuchElementException(); KEY_GENERIC_TYPE next = a[lastOffset = offset].NEXT_KEY(); advance(); return next; } #if KEYS_PRIMITIVE @Override public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { while (length > 0) { a[lastOffset = offset].forEachRemaining(action); advance(); } } #endif DEPRECATED_IF_KEYS_PRIMITIVE @Override public void forEachRemaining(final Consumer action) { while (length > 0) { a[lastOffset = offset].forEachRemaining(action); advance(); } } @Override public void remove() { if (lastOffset == -1) throw new IllegalStateException(); a[lastOffset].remove(); } @Override public int skip(int n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); lastOffset = -1; int skipped = 0; while(skipped < n && length != 0) { skipped += a[offset].skip(n - skipped); if (a[offset].hasNext()) break; length--; offset++; } return skipped; } } /** Concatenates all iterators contained in an array. * *

This method returns an iterator that will enumerate in order the elements returned * by all iterators contained in the given array. * * @param a an array of iterators. * @return an iterator obtained by concatenation. */ #if KEYS_REFERENCE @SafeVarargs // Spliterators can only give K, never consume them, making this safe. #endif public static KEY_GENERIC KEY_ITERATOR KEY_GENERIC concat(final KEY_ITERATOR KEY_EXTENDS_GENERIC... a) { return concat(a, 0, a.length); } /** Concatenates a sequence of iterators contained in an array. * *

This method returns an iterator that will enumerate in order the elements returned * by {@code a[offset]}, then those returned * by {@code a[offset + 1]}, and so on up to * {@code a[offset + length - 1]}. * * @param a an array of iterators. * @param offset the index of the first iterator to concatenate. * @param length the number of iterators to concatenate. * @return an iterator obtained by concatenation of {@code length} elements of {@code a} starting at {@code offset}. */ public static KEY_GENERIC KEY_ITERATOR KEY_GENERIC concat(final KEY_ITERATOR KEY_EXTENDS_GENERIC a[], final int offset, final int length) { return new IteratorConcatenator KEY_GENERIC_DIAMOND(a, offset, length); } /** An unmodifiable wrapper class for iterators. */ public static class UnmodifiableIterator KEY_GENERIC implements KEY_ITERATOR KEY_GENERIC { protected final KEY_ITERATOR KEY_EXTENDS_GENERIC i; public UnmodifiableIterator(final KEY_ITERATOR KEY_EXTENDS_GENERIC i) { this.i = i; } @Override public boolean hasNext() { return i.hasNext(); } @Override public KEY_GENERIC_TYPE NEXT_KEY() { return i.NEXT_KEY(); } #if KEYS_PRIMITIVE @Override public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { i.forEachRemaining(action); } #endif DEPRECATED_IF_KEYS_PRIMITIVE @Override public void forEachRemaining(final Consumer action) { i.forEachRemaining(action); } } /** Returns an unmodifiable iterator backed by the specified iterator. * * @param i the iterator to be wrapped in an unmodifiable iterator. * @return an unmodifiable view of the specified iterator. */ public static KEY_GENERIC KEY_ITERATOR KEY_GENERIC unmodifiable(final KEY_ITERATOR KEY_EXTENDS_GENERIC i) { return new UnmodifiableIterator KEY_GENERIC_DIAMOND(i); } /** An unmodifiable wrapper class for bidirectional iterators. */ public static class UnmodifiableBidirectionalIterator KEY_GENERIC implements KEY_BIDI_ITERATOR KEY_GENERIC { protected final KEY_BIDI_ITERATOR KEY_EXTENDS_GENERIC i; public UnmodifiableBidirectionalIterator(final KEY_BIDI_ITERATOR KEY_EXTENDS_GENERIC i) { this.i = i; } @Override public boolean hasNext() { return i.hasNext(); } @Override public boolean hasPrevious() { return i.hasPrevious(); } @Override public KEY_GENERIC_TYPE NEXT_KEY() { return i.NEXT_KEY(); } @Override public KEY_GENERIC_TYPE PREV_KEY() { return i.PREV_KEY(); } #if KEYS_PRIMITIVE @Override public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { i.forEachRemaining(action); } #endif DEPRECATED_IF_KEYS_PRIMITIVE @Override public void forEachRemaining(final Consumer action) { i.forEachRemaining(action); } } /** Returns an unmodifiable bidirectional iterator backed by the specified bidirectional iterator. * * @param i the bidirectional iterator to be wrapped in an unmodifiable bidirectional iterator. * @return an unmodifiable view of the specified bidirectional iterator. */ public static KEY_GENERIC KEY_BIDI_ITERATOR KEY_GENERIC unmodifiable(final KEY_BIDI_ITERATOR KEY_EXTENDS_GENERIC i) { return new UnmodifiableBidirectionalIterator KEY_GENERIC_DIAMOND(i); } /** An unmodifiable wrapper class for list iterators. */ public static class UnmodifiableListIterator KEY_GENERIC implements KEY_LIST_ITERATOR KEY_GENERIC { protected final KEY_LIST_ITERATOR KEY_EXTENDS_GENERIC i; public UnmodifiableListIterator(final KEY_LIST_ITERATOR KEY_EXTENDS_GENERIC i) { this.i = i; } @Override public boolean hasNext() { return i.hasNext(); } @Override public boolean hasPrevious() { return i.hasPrevious(); } @Override public KEY_GENERIC_TYPE NEXT_KEY() { return i.NEXT_KEY(); } @Override public KEY_GENERIC_TYPE PREV_KEY() { return i.PREV_KEY(); } @Override public int nextIndex() { return i.nextIndex(); } @Override public int previousIndex() { return i.previousIndex(); } #if KEYS_PRIMITIVE @Override public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { i.forEachRemaining(action); } #endif DEPRECATED_IF_KEYS_PRIMITIVE @Override public void forEachRemaining(final Consumer action) { i.forEachRemaining(action); } } /** Returns an unmodifiable list iterator backed by the specified list iterator. * * @param i the list iterator to be wrapped in an unmodifiable list iterator. * @return an unmodifiable view of the specified list iterator. */ public static KEY_GENERIC KEY_LIST_ITERATOR KEY_GENERIC unmodifiable(final KEY_LIST_ITERATOR KEY_EXTENDS_GENERIC i) { return new UnmodifiableListIterator KEY_GENERIC_DIAMOND(i); } #if KEY_CLASS_Short || KEY_CLASS_Integer || KEY_CLASS_Long || KEY_CLASS_Float || KEY_CLASS_Double /** A wrapper promoting the results of a ByteIterator. */ private final static class ByteIteratorWrapper implements KEY_ITERATOR { final it.unimi.dsi.fastutil.bytes.ByteIterator iterator; public ByteIteratorWrapper(final it.unimi.dsi.fastutil.bytes.ByteIterator iterator) { this.iterator = iterator; } @Override public boolean hasNext() { return iterator.hasNext(); } @Deprecated @Override public KEY_GENERIC_CLASS next() { return KEY_GENERIC_CLASS.valueOf(iterator.nextByte()); } @Override public KEY_TYPE NEXT_KEY() { return iterator.nextByte(); } @Override public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { Objects.requireNonNull(action); iterator.forEachRemaining(action::accept); } @Override public void remove() { iterator.remove(); } @Override public int skip(final int n) { return iterator.skip(n); } } /** Returns an iterator backed by the specified byte iterator. * @param iterator a byte iterator. * @return an iterator backed by the specified byte iterator. */ public static KEY_ITERATOR wrap(final it.unimi.dsi.fastutil.bytes.ByteIterator iterator) { return new ByteIteratorWrapper(iterator); } #endif #if KEY_CLASS_Integer || KEY_CLASS_Long || KEY_CLASS_Float || KEY_CLASS_Double /** A wrapper promoting the results of a ShortIterator. */ private final static class ShortIteratorWrapper implements KEY_ITERATOR { final it.unimi.dsi.fastutil.shorts.ShortIterator iterator; public ShortIteratorWrapper(final it.unimi.dsi.fastutil.shorts.ShortIterator iterator) { this.iterator = iterator; } @Override public boolean hasNext() { return iterator.hasNext(); } @Deprecated @Override public KEY_GENERIC_CLASS next() { return KEY_GENERIC_CLASS.valueOf(iterator.nextShort()); } @Override public KEY_TYPE NEXT_KEY() { return iterator.nextShort(); } @Override public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { Objects.requireNonNull(action); iterator.forEachRemaining(action::accept); } @Override public void remove() { iterator.remove(); } @Override public int skip(final int n) { return iterator.skip(n); } } /** Returns an iterator backed by the specified short iterator. * @param iterator a short iterator. * @return an iterator backed by the specified short iterator. */ public static KEY_ITERATOR wrap(final it.unimi.dsi.fastutil.shorts.ShortIterator iterator) { return new ShortIteratorWrapper(iterator); } #endif #if KEY_CLASS_Integer || KEY_CLASS_Long || KEY_CLASS_Float || KEY_CLASS_Double /** A wrapper promoting the results of a CharIterator. */ private final static class CharIteratorWrapper implements KEY_ITERATOR { final it.unimi.dsi.fastutil.chars.CharIterator iterator; public CharIteratorWrapper(final it.unimi.dsi.fastutil.chars.CharIterator iterator) { this.iterator = iterator; } @Override public boolean hasNext() { return iterator.hasNext(); } @Deprecated @Override public KEY_GENERIC_CLASS next() { return KEY_GENERIC_CLASS.valueOf(iterator.nextChar()); } @Override public KEY_TYPE NEXT_KEY() { return iterator.nextChar(); } @Override public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { Objects.requireNonNull(action); iterator.forEachRemaining(action::accept); } @Override public void remove() { iterator.remove(); } @Override public int skip(final int n) { return iterator.skip(n); } } /** Returns an iterator backed by the specified char iterator. * *

WARNING: This is not the same as converting the source to a sequence * of code points. This returned instance literally performs {@code (int)(charValue)} casts. * Surrogate pairs will be left as separate elements instead of combined into a single element * with the code point it represents. See {@link Character} for more discussion on code points, * char values, and surrogate pairs. * * @param iterator a char iterator. * @return an iterator backed by the specified char iterator. */ public static KEY_ITERATOR wrap(final it.unimi.dsi.fastutil.chars.CharIterator iterator) { return new CharIteratorWrapper(iterator); } #endif #if KEY_CLASS_Long || KEY_CLASS_Double /** A wrapper promoting the results of an IntIterator. */ private final static class IntIteratorWrapper implements KEY_ITERATOR { final it.unimi.dsi.fastutil.ints.IntIterator iterator; public IntIteratorWrapper(final it.unimi.dsi.fastutil.ints.IntIterator iterator) { this.iterator = iterator; } @Override public boolean hasNext() { return iterator.hasNext(); } @Deprecated @Override public KEY_GENERIC_CLASS next() { return KEY_GENERIC_CLASS.valueOf(iterator.nextInt()); } @Override public KEY_TYPE NEXT_KEY() { return iterator.nextInt(); } @Override public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { Objects.requireNonNull(action); iterator.forEachRemaining(action::accept); } @Override public void remove() { iterator.remove(); } @Override public int skip(final int n) { return iterator.skip(n); } } /** Returns an iterator backed by the specified integer iterator. * @param iterator an integer iterator. * @return an iterator backed by the specified integer iterator. */ public static KEY_ITERATOR wrap(final it.unimi.dsi.fastutil.ints.IntIterator iterator) { return new IntIteratorWrapper(iterator); } #endif #if KEY_CLASS_Double /** A wrapper promoting the results of a FloatIterator. */ private final static class FloatIteratorWrapper implements KEY_ITERATOR { final it.unimi.dsi.fastutil.floats.FloatIterator iterator; public FloatIteratorWrapper(final it.unimi.dsi.fastutil.floats.FloatIterator iterator) { this.iterator = iterator; } @Override public boolean hasNext() { return iterator.hasNext(); } @Deprecated @Override public KEY_GENERIC_CLASS next() { return KEY_GENERIC_CLASS.valueOf(iterator.nextFloat()); } @Override public KEY_TYPE NEXT_KEY() { return iterator.nextFloat(); } @Override public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { Objects.requireNonNull(action); iterator.forEachRemaining(action::accept); } @Override public void remove() { iterator.remove(); } @Override public int skip(final int n) { return iterator.skip(n); } } /** Returns an iterator backed by the specified float iterator. * @param iterator a float iterator. * @return an iterator backed by the specified float iterator. */ public static KEY_ITERATOR wrap(final it.unimi.dsi.fastutil.floats.FloatIterator iterator) { return new FloatIteratorWrapper(iterator); } #endif }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy