drv.Iterators.drv Maven / Gradle / Ivy
Show all versions of fastutil-core Show documentation
/*
* Copyright (C) 2002-2022 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package PACKAGE;
import static it.unimi.dsi.fastutil.BigArrays.grow;
import static it.unimi.dsi.fastutil.BigArrays.length;
import static it.unimi.dsi.fastutil.BigArrays.set;
import static it.unimi.dsi.fastutil.BigArrays.trim;
import java.util.Iterator;
import java.util.ListIterator;
import java.util.NoSuchElementException;
import java.util.Objects;
import java.util.function.Consumer;
#if KEYS_PRIMITIVE && ! KEY_CLASS_Boolean
import java.util.PrimitiveIterator;
#if KEYS_BYTE_CHAR_SHORT_FLOAT
import WIDENED_PACKAGE.KEY_WIDENED_ITERATOR;
import WIDENED_PACKAGE.WIDENED_ITERATORS;
#endif
#endif
#if KEYS_REFERENCE
import java.util.function.Predicate;
#endif
/** A class providing static methods and objects that do useful things with type-specific iterators.
*
* @see Iterator
*/
public final class ITERATORS {
private ITERATORS() {}
/** A class returning no elements and a type-specific iterator interface.
*
* This class may be useful to implement your own in case you subclass
* a type-specific iterator.
*/
public static class EmptyIterator KEY_GENERIC implements KEY_LIST_ITERATOR KEY_GENERIC, java.io.Serializable, Cloneable {
private static final long serialVersionUID = -7046029254386353129L;
protected EmptyIterator() {}
@Override
public boolean hasNext() { return false; }
@Override
public boolean hasPrevious() { return false; }
@Override
public KEY_GENERIC_TYPE NEXT_KEY() { throw new NoSuchElementException(); }
@Override
public KEY_GENERIC_TYPE PREV_KEY() { throw new NoSuchElementException(); }
@Override
public int nextIndex() { return 0; }
@Override
public int previousIndex() { return -1; }
@Override
public int skip(int n) { return 0; }
@Override
public int back(int n) { return 0; }
#if KEYS_PRIMITIVE
@Override
public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { }
#endif
DEPRECATED_IF_KEYS_PRIMITIVE
@Override
public void forEachRemaining(final Consumer super KEY_GENERIC_CLASS> action) { }
@Override
public Object clone() { return EMPTY_ITERATOR; }
private Object readResolve() { return EMPTY_ITERATOR; }
}
/** An empty iterator. It is serializable and cloneable.
*
*
The class of this objects represent an abstract empty iterator
* that can iterate as a type-specific (list) iterator.
*/
SUPPRESS_WARNINGS_KEY_RAWTYPES
public static final EmptyIterator EMPTY_ITERATOR = new EmptyIterator();
#if KEYS_REFERENCE
/** Returns an empty iterator. It is serializable and cloneable.
*
*
The class of the object returned represent an abstract empty iterator
* that can iterate as a type-specific (list) iterator.
*
*
This method provides a typesafe access to {@link #EMPTY_ITERATOR}.
* @return an empty iterator.
*/
@SuppressWarnings("unchecked")
public static KEY_GENERIC KEY_ITERATOR KEY_GENERIC emptyIterator() { return EMPTY_ITERATOR; }
#endif
/** An iterator returning a single element. */
private static class SingletonIterator KEY_GENERIC implements KEY_LIST_ITERATOR KEY_GENERIC {
private final KEY_GENERIC_TYPE element;
private byte curr;
public SingletonIterator(final KEY_GENERIC_TYPE element) {
this.element = element;
}
@Override
public boolean hasNext() { return curr == 0; }
@Override
public boolean hasPrevious() { return curr == 1; }
@Override
public KEY_GENERIC_TYPE NEXT_KEY() {
if (! hasNext()) throw new NoSuchElementException();
curr = 1;
return element;
}
@Override
public KEY_GENERIC_TYPE PREV_KEY() {
if (! hasPrevious()) throw new NoSuchElementException();
curr = 0;
return element;
}
@Override
#if KEYS_PRIMITIVE
public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
#else // ! KEY_PRIMITIVE == KEY_REFERENCE
public void forEachRemaining(final Consumer super KEY_GENERIC_CLASS> action) {
#endif
Objects.requireNonNull(action);
if (curr == 0) {
action.accept(element);
curr = 1;
}
}
@Override
public int nextIndex() {
return curr;
}
@Override
public int previousIndex() {
return curr - 1;
}
@Override
public int back(int n) {
if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n);
if (n == 0 || curr < 1) return 0;
curr = 1;
return 1;
}
@Override
public int skip(int n) {
if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n);
if (n == 0 || curr > 0) return 0;
curr = 0;
return 1;
}
}
/** Returns an immutable iterator that iterates just over the given element.
*
* @param element the only element to be returned by a type-specific list iterator.
* @return an immutable iterator that iterates just over {@code element}.
*/
public static KEY_GENERIC KEY_LIST_ITERATOR KEY_GENERIC singleton(final KEY_GENERIC_TYPE element) {
return new SingletonIterator KEY_GENERIC_DIAMOND(element);
}
/** A class to wrap arrays in iterators. */
private static class ArrayIterator KEY_GENERIC implements KEY_LIST_ITERATOR KEY_GENERIC {
private final KEY_GENERIC_TYPE[] array;
private final int offset, length;
private int curr;
public ArrayIterator(final KEY_GENERIC_TYPE[] array, final int offset, final int length) {
this.array = array;
this.offset = offset;
this.length = length;
}
@Override
public boolean hasNext() { return curr < length; }
@Override
public boolean hasPrevious() { return curr > 0; }
@Override
public KEY_GENERIC_TYPE NEXT_KEY() {
if (! hasNext()) throw new NoSuchElementException();
return array[offset + curr++];
}
@Override
public KEY_GENERIC_TYPE PREV_KEY() {
if (! hasPrevious()) throw new NoSuchElementException();
return array[offset + --curr];
}
@Override
#if KEYS_PRIMITIVE
public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
#else // ! KEY_PRIMITIVE == KEY_REFERENCE
public void forEachRemaining(final Consumer super KEY_GENERIC_CLASS> action) {
#endif
Objects.requireNonNull(action);
for (; curr < length; ++curr) {
action.accept(array[offset + curr]);
}
}
@Override
public int skip(int n) {
if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n);
if (n <= length - curr) {
curr += n;
return n;
}
n = length - curr;
curr = length;
return n;
}
@Override
public int back(int n) {
if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n);
if (n <= curr) {
curr -= n;
return n;
}
n = curr;
curr = 0;
return n;
}
@Override
public int nextIndex() {
return curr;
}
@Override
public int previousIndex() {
return curr - 1;
}
}
/** Wraps the given part of an array into a type-specific list iterator.
*
*
The type-specific list iterator returned by this method will iterate
* {@code length} times, returning consecutive elements of the given
* array starting from the one with index {@code offset}.
*
* @param array an array to wrap into a type-specific list iterator.
* @param offset the first element of the array to be returned.
* @param length the number of elements to return.
* @return an iterator that will return {@code length} elements of {@code array} starting at position {@code offset}.
*/
public static KEY_GENERIC KEY_LIST_ITERATOR KEY_GENERIC wrap(final KEY_GENERIC_TYPE[] array, final int offset, final int length) {
ARRAYS.ensureOffsetLength(array, offset, length);
return new ArrayIterator KEY_GENERIC_DIAMOND(array, offset, length);
}
/** Wraps the given array into a type-specific list iterator.
*
*
The type-specific list iterator returned by this method will return
* all elements of the given array.
*
* @param array an array to wrap into a type-specific list iterator.
* @return an iterator that will return the elements of {@code array}.
*/
public static KEY_GENERIC KEY_LIST_ITERATOR KEY_GENERIC wrap(final KEY_GENERIC_TYPE[] array) {
return new ArrayIterator KEY_GENERIC_DIAMOND(array, 0, array.length);
}
/** Unwraps an iterator into an array starting at a given offset for a given number of elements.
*
*
This method iterates over the given type-specific iterator and stores the elements
* returned, up to a maximum of {@code length}, in the given array starting at {@code offset}.
* The number of actually unwrapped elements is returned (it may be less than {@code max} if
* the iterator emits less than {@code max} elements).
*
* @param i a type-specific iterator.
* @param array an array to contain the output of the iterator.
* @param offset the first element of the array to be returned.
* @param max the maximum number of elements to unwrap.
* @return the number of elements unwrapped.
*/
public static KEY_GENERIC int unwrap(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, final KEY_GENERIC_TYPE array[], int offset, final int max) {
if (max < 0) throw new IllegalArgumentException("The maximum number of elements (" + max + ") is negative");
if (offset < 0 || offset + max > array.length) throw new IllegalArgumentException();
int j = max;
while(j-- != 0 && i.hasNext()) array[offset++] = i.NEXT_KEY();
return max - j - 1;
}
/** Unwraps an iterator into an array.
*
*
This method iterates over the given type-specific iterator and stores the
* elements returned in the given array. The iteration will stop when the
* iterator has no more elements or when the end of the array has been reached.
*
* @param i a type-specific iterator.
* @param array an array to contain the output of the iterator.
* @return the number of elements unwrapped.
*/
public static KEY_GENERIC int unwrap(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, final KEY_GENERIC_TYPE array[]) {
return unwrap(i, array, 0, array.length);
}
/** Unwraps an iterator, returning an array, with a limit on the number of elements.
*
*
This method iterates over the given type-specific iterator and returns an array
* containing the elements returned by the iterator. At most {@code max} elements
* will be returned.
*
* @param i a type-specific iterator.
* @param max the maximum number of elements to be unwrapped.
* @return an array containing the elements returned by the iterator (at most {@code max}).
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public static KEY_GENERIC KEY_GENERIC_TYPE[] unwrap(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, int max) {
if (max < 0) throw new IllegalArgumentException("The maximum number of elements (" + max + ") is negative");
KEY_GENERIC_TYPE array[] = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[16];
int j = 0;
while(max-- != 0 && i.hasNext()) {
if (j == array.length) array = ARRAYS.grow(array, j + 1);
array[j++] = i.NEXT_KEY();
}
return ARRAYS.trim(array, j);
}
/** Unwraps an iterator, returning an array.
*
*
This method iterates over the given type-specific iterator and returns an array
* containing the elements returned by the iterator.
*
* @param i a type-specific iterator.
* @return an array containing the elements returned by the iterator.
*/
public static KEY_GENERIC KEY_GENERIC_TYPE[] unwrap(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i) {
return unwrap(i, Integer.MAX_VALUE);
}
/** Unwraps an iterator into a big array starting at a given offset for a given number of elements.
*
*
This method iterates over the given type-specific iterator and stores the elements
* returned, up to a maximum of {@code length}, in the given big array starting at {@code offset}.
* The number of actually unwrapped elements is returned (it may be less than {@code max} if
* the iterator emits less than {@code max} elements).
*
* @param i a type-specific iterator.
* @param array a big array to contain the output of the iterator.
* @param offset the first element of the array to be returned.
* @param max the maximum number of elements to unwrap.
* @return the number of elements unwrapped.
*/
public static KEY_GENERIC long unwrap(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, final KEY_GENERIC_TYPE array[][], long offset, final long max) {
if (max < 0) throw new IllegalArgumentException("The maximum number of elements (" + max + ") is negative");
if (offset < 0 || offset + max > length(array)) throw new IllegalArgumentException();
long j = max;
while(j-- != 0 && i.hasNext()) set(array, offset++, i.NEXT_KEY());
return max - j - 1;
}
/** Unwraps an iterator into a big array.
*
*
This method iterates over the given type-specific iterator and stores the
* elements returned in the given big array. The iteration will stop when the
* iterator has no more elements or when the end of the array has been reached.
*
* @param i a type-specific iterator.
* @param array a big array to contain the output of the iterator.
* @return the number of elements unwrapped.
*/
public static KEY_GENERIC long unwrap(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, final KEY_GENERIC_TYPE array[][]) {
return unwrap(i, array, 0, length(array));
}
/** Unwraps an iterator into a type-specific collection, with a limit on the number of elements.
*
*
This method iterates over the given type-specific iterator and stores the elements
* returned, up to a maximum of {@code max}, in the given type-specific collection.
* The number of actually unwrapped elements is returned (it may be less than {@code max} if
* the iterator emits less than {@code max} elements).
*
* @param i a type-specific iterator.
* @param c a type-specific collection array to contain the output of the iterator.
* @param max the maximum number of elements to unwrap.
* @return the number of elements unwrapped. Note that
* this is the number of elements returned by the iterator, which is not necessarily the number
* of elements that have been added to the collection (because of duplicates).
*/
public static KEY_GENERIC int unwrap(final STD_KEY_ITERATOR KEY_GENERIC i, final COLLECTION KEY_SUPER_GENERIC c, final int max) {
if (max < 0) throw new IllegalArgumentException("The maximum number of elements (" + max + ") is negative");
int j = max;
while(j-- != 0 && i.hasNext()) c.add(i.NEXT_KEY());
return max - j - 1;
}
/** Unwraps an iterator, returning a big array, with a limit on the number of elements.
*
*
This method iterates over the given type-specific iterator and returns a big array
* containing the elements returned by the iterator. At most {@code max} elements
* will be returned.
*
* @param i a type-specific iterator.
* @param max the maximum number of elements to be unwrapped.
* @return a big array containing the elements returned by the iterator (at most {@code max}).
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public static KEY_GENERIC KEY_GENERIC_TYPE[][] unwrapBig(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, long max) {
if (max < 0) throw new IllegalArgumentException("The maximum number of elements (" + max + ") is negative");
KEY_GENERIC_TYPE array[][] = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray(16);
long j = 0;
while(max-- != 0 && i.hasNext()) {
if (j == length(array)) array = grow(array, j + 1);
set(array, j++, i.NEXT_KEY());
}
return trim(array, j);
}
/** Unwraps an iterator, returning a big array.
*
*
This method iterates over the given type-specific iterator and returns a big array
* containing the elements returned by the iterator.
*
* @param i a type-specific iterator.
* @return a big array containing the elements returned by the iterator.
*/
public static KEY_GENERIC KEY_GENERIC_TYPE[][] unwrapBig(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i) {
return unwrapBig(i, Long.MAX_VALUE);
}
/** Unwraps an iterator into a type-specific collection.
*
*
This method iterates over the given type-specific iterator and stores the
* elements returned in the given type-specific collection. The returned count on the number
* unwrapped elements is a long, so that it will work also with very large collections.
*
* @param i a type-specific iterator.
* @param c a type-specific collection to contain the output of the iterator.
* @return the number of elements unwrapped. Note that
* this is the number of elements returned by the iterator, which is not necessarily the number
* of elements that have been added to the collection (because of duplicates).
*/
public static KEY_GENERIC long unwrap(final STD_KEY_ITERATOR KEY_GENERIC i, final COLLECTION KEY_SUPER_GENERIC c) {
long n = 0;
while(i.hasNext()) {
c.add(i.NEXT_KEY());
n++;
}
return n;
}
/** Pours an iterator into a type-specific collection, with a limit on the number of elements.
*
*
This method iterates over the given type-specific iterator and adds
* the returned elements to the given collection (up to {@code max}).
*
* @param i a type-specific iterator.
* @param s a type-specific collection.
* @param max the maximum number of elements to be poured.
* @return the number of elements poured. Note that
* this is the number of elements returned by the iterator, which is not necessarily the number
* of elements that have been added to the collection (because of duplicates).
*/
public static KEY_GENERIC int pour(final STD_KEY_ITERATOR KEY_GENERIC i, final COLLECTION KEY_SUPER_GENERIC s, final int max) {
if (max < 0) throw new IllegalArgumentException("The maximum number of elements (" + max + ") is negative");
int j = max;
while(j-- != 0 && i.hasNext()) s.add(i.NEXT_KEY());
return max - j - 1;
}
/** Pours an iterator into a type-specific collection.
*
*
This method iterates over the given type-specific iterator and adds
* the returned elements to the given collection.
*
* @param i a type-specific iterator.
* @param s a type-specific collection.
* @return the number of elements poured. Note that
* this is the number of elements returned by the iterator, which is not necessarily the number
* of elements that have been added to the collection (because of duplicates).
*/
public static KEY_GENERIC int pour(final STD_KEY_ITERATOR KEY_GENERIC i, final COLLECTION KEY_SUPER_GENERIC s) {
return pour(i, s, Integer.MAX_VALUE);
}
/** Pours an iterator, returning a type-specific list, with a limit on the number of elements.
*
*
This method iterates over the given type-specific iterator and returns
* a type-specific list containing the returned elements (up to {@code max}). Iteration
* on the returned list is guaranteed to produce the elements in the same order
* in which they appeared in the iterator.
*
*
* @param i a type-specific iterator.
* @param max the maximum number of elements to be poured.
* @return a type-specific list containing the returned elements, up to {@code max}.
*/
public static KEY_GENERIC LIST KEY_GENERIC pour(final STD_KEY_ITERATOR KEY_GENERIC i, int max) {
final ARRAY_LIST KEY_GENERIC l = new ARRAY_LIST KEY_GENERIC_DIAMOND();
pour(i, l, max);
l.trim();
return l;
}
/** Pours an iterator, returning a type-specific list.
*
*
This method iterates over the given type-specific iterator and returns
* a list containing the returned elements. Iteration
* on the returned list is guaranteed to produce the elements in the same order
* in which they appeared in the iterator.
*
* @param i a type-specific iterator.
* @return a type-specific list containing the returned elements.
*/
public static KEY_GENERIC LIST KEY_GENERIC pour(final STD_KEY_ITERATOR KEY_GENERIC i) {
return pour(i, Integer.MAX_VALUE);
}
private static class IteratorWrapper KEY_GENERIC implements KEY_ITERATOR KEY_GENERIC {
final Iterator i;
public IteratorWrapper(final Iterator i) {
this.i = i;
}
@Override
public boolean hasNext() { return i.hasNext(); }
@Override
public void remove() { i.remove(); }
@Override
public KEY_GENERIC_TYPE NEXT_KEY() { return KEY_CLASS2TYPE(i.next()); }
#if KEYS_INT_LONG_DOUBLE
// This is pretty much the only time overriding this overload is correct; we want to
// delegate as an Object consumer, not wrap it as a primitive one.
@Override
public void forEachRemaining(final KEY_CONSUMER action) {
i.forEachRemaining(action);
}
#endif
#if KEYS_PRIMITIVE
#if KEYS_INT_LONG_DOUBLE
@SuppressWarnings("unchecked")
#endif
@Override
public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
#if KEYS_INT_LONG_DOUBLE // The JDK's IntConsumer is not a subclass of Consumer, so we need another lambda.
Objects.requireNonNull(action);
i.forEachRemaining(action instanceof Consumer ? (Consumer super KEY_GENERIC_CLASS>)action : action::accept);
#else
i.forEachRemaining(action);
#endif
}
#endif
DEPRECATED_IF_KEYS_PRIMITIVE
@Override
public void forEachRemaining(final Consumer super KEY_GENERIC_CLASS> action) {
i.forEachRemaining(action);
}
}
#if KEYS_PRIMITIVE && ! KEY_CLASS_Boolean
private static class PrimitiveIteratorWrapper KEY_GENERIC implements KEY_ITERATOR KEY_GENERIC {
final JDK_PRIMITIVE_ITERATOR i;
public PrimitiveIteratorWrapper(JDK_PRIMITIVE_ITERATOR i) {
this.i = i;
}
@Override
public boolean hasNext() { return i.hasNext(); }
@Override
public void remove() { i.remove(); }
@Override
#if KEYS_INT_LONG_DOUBLE
public KEY_GENERIC_TYPE NEXT_KEY() { return i.NEXT_KEY_WIDENED(); }
#else
public KEY_GENERIC_TYPE NEXT_KEY() { return (KEY_GENERIC_TYPE)i.NEXT_KEY_WIDENED(); }
#endif
@Override
public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
i.forEachRemaining(action);
}
}
#endif
#if KEYS_BYTE_CHAR_SHORT_FLOAT
private static class CheckedPrimitiveIteratorWrapper KEY_GENERIC extends PrimitiveIteratorWrapper {
public CheckedPrimitiveIteratorWrapper(JDK_PRIMITIVE_ITERATOR i) {
super(i);
}
@Override
public KEY_GENERIC_TYPE NEXT_KEY() { return KEY_NARROWING(i.NEXT_KEY_WIDENED()); }
@Override
public void forEachRemaining(final KEY_CONSUMER action) {
i.forEachRemaining((JDK_PRIMITIVE_KEY_CONSUMER)(KEY_GENERIC_TYPE_WIDENED value) -> { action.accept(KEY_NARROWING(value)); });
}
}
#endif
/** Wraps a standard iterator into a type-specific iterator.
*
* This method wraps a standard iterator into a type-specific one which will handle the
* type conversions for you. Of course, any attempt to wrap an iterator returning the
* instances of the wrong class will generate a {@link ClassCastException}. The
* returned iterator is backed by {@code i}: changes to one of the iterators
* will affect the other, too.
*
* @implNote If {@code i} is already type-specific, it will returned and no new object
* will be generated.
*
* @param i an iterator.
* @return a type-specific iterator backed by {@code i}.
*/
#if KEYS_PRIMITIVE
@SuppressWarnings({"unchecked","rawtypes"})
#endif
public static KEY_GENERIC KEY_ITERATOR KEY_GENERIC AS_KEY_ITERATOR(final Iterator KEY_GENERIC i) {
if (i instanceof KEY_ITERATOR) return (KEY_ITERATOR KEY_GENERIC)i;
#if KEYS_INT_LONG_DOUBLE
if (i instanceof JDK_PRIMITIVE_ITERATOR) return new PrimitiveIteratorWrapper KEY_GENERIC_DIAMOND((JDK_PRIMITIVE_ITERATOR)i);
#endif
return new IteratorWrapper KEY_GENERIC_DIAMOND(i);
}
#if KEYS_BYTE_CHAR_SHORT_FLOAT
/** Wrap a JDK primitive iterator to a type-specific iterator, making checked
* narrowed casts.
*
* @implNote The {@code next} method throws {@link IllegalArgumentException} if any element would underflow or overflow.
*
* @param i an iterator.
* @return a type-specific iterator backed by {@code i}.
* @since 8.5.0
*/
public static KEY_GENERIC KEY_ITERATOR KEY_GENERIC narrow(final JDK_PRIMITIVE_ITERATOR i) {
return new CheckedPrimitiveIteratorWrapper KEY_GENERIC_DIAMOND(i);
}
#endif
#if KEYS_BYTE_CHAR_SHORT_FLOAT
/** Wrap a JDK primitive iterator to a type-specific iterator, making unchecked
* narrowing casts.
*
*
No test is done for overflow or underflow.
*
* @param i an iterator.
* @return a type-specific iterator backed by {@code i}.
* @since 8.5.0
*/
public static KEY_GENERIC KEY_ITERATOR KEY_GENERIC uncheckedNarrow(final JDK_PRIMITIVE_ITERATOR i) {
return new PrimitiveIteratorWrapper KEY_GENERIC_DIAMOND(i);
}
#endif
#if KEYS_BYTE_CHAR_SHORT_FLOAT
#if KEY_CLASS_Character
/** Wrap a type-specific iterator to a JDK compatible primitive iterator.
*
*
WARNING: This is not the same as converting the source to a sequence
* of code points. This returned instance literally performs {@code (int)(charValue)} casts.
* Surrogate pairs will be left as separate elements instead of combined into a single element
* with the code point it represents. See {@link Character} for more discussion on code points,
* char values, and surrogate pairs.
*
* @param i an iterator
* @return a JDK compatible primitive iterator backed by {@code i}
* @since 8.5.0
*/
#else
/** Wrap a type-specific iterator to a JDK compatible primitive iterator.
*
* @param i an iterator
* @return a JDK compatible primitive iterator backed by {@code i}
* @since 8.5.0
*/
#endif
public static KEY_WIDENED_ITERATOR widen(KEY_ITERATOR i) { return WIDENED_ITERATORS.wrap(i); }
#endif
private static class ListIteratorWrapper KEY_GENERIC implements KEY_LIST_ITERATOR KEY_GENERIC {
final ListIterator i;
public ListIteratorWrapper(final ListIterator i) {
this.i = i;
}
@Override
public boolean hasNext() { return i.hasNext(); }
@Override
public boolean hasPrevious() { return i.hasPrevious(); }
@Override
public int nextIndex() { return i.nextIndex(); }
@Override
public int previousIndex() { return i.previousIndex(); }
@Override
public void set(KEY_GENERIC_TYPE k) { i.set(KEY2OBJ(k)); }
@Override
public void add(KEY_GENERIC_TYPE k) { i.add(KEY2OBJ(k)); }
@Override
public void remove() { i.remove(); }
@Override
public KEY_GENERIC_TYPE NEXT_KEY() { return KEY_CLASS2TYPE(i.next()); }
@Override
public KEY_GENERIC_TYPE PREV_KEY() { return KEY_CLASS2TYPE(i.previous()); }
#if KEYS_INT_LONG_DOUBLE
// This is pretty much the only time overriding this overload is correct; we want to
// delegate as an Object consumer, not wrap it as a primitive one.
@Override
public void forEachRemaining(final KEY_CONSUMER action) {
i.forEachRemaining(action);
}
#endif
#if KEYS_PRIMITIVE
#if KEYS_INT_LONG_DOUBLE
@SuppressWarnings("unchecked")
#endif
@Override
public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
#if KEYS_INT_LONG_DOUBLE // The JDK's IntConsumer is not a subclass of Consumer, so we another lambda.
Objects.requireNonNull(action);
i.forEachRemaining(action instanceof Consumer ? (Consumer super KEY_GENERIC_CLASS>)action : action::accept);
#else
i.forEachRemaining(action);
#endif
}
#endif
DEPRECATED_IF_KEYS_PRIMITIVE
@Override
public void forEachRemaining(final Consumer super KEY_GENERIC_CLASS> action) {
i.forEachRemaining(action);
}
}
/** Wraps a standard list iterator into a type-specific list iterator.
*
* This method wraps a standard list iterator into a type-specific one
* which will handle the type conversions for you. Of course, any attempt
* to wrap an iterator returning the instances of the wrong class will
* generate a {@link ClassCastException}. The
* returned iterator is backed by {@code i}: changes to one of the iterators
* will affect the other, too.
*
*
If {@code i} is already type-specific, it will returned and no new object
* will be generated.
*
* @param i a list iterator.
* @return a type-specific list iterator backed by {@code i}.
*/
#if KEYS_PRIMITIVE
@SuppressWarnings({"unchecked","rawtypes"})
#endif
public static KEY_GENERIC KEY_LIST_ITERATOR KEY_GENERIC AS_KEY_ITERATOR(final ListIterator KEY_GENERIC i) {
if (i instanceof KEY_LIST_ITERATOR) return (KEY_LIST_ITERATOR KEY_GENERIC)i;
return new ListIteratorWrapper KEY_GENERIC_DIAMOND(i);
}
/**
* Returns whether an element returned by the given iterator satisfies the given predicate.
*
Short circuit evaluation is performed; the first {@code true} from the predicate terminates the loop.
* @return true if an element returned by {@code iterator} satisfies {@code predicate}.
*/
public static KEY_GENERIC boolean any(final STD_KEY_ITERATOR KEY_GENERIC iterator, final METHOD_ARG_PREDICATE predicate) {
return indexOf(iterator, predicate) != -1;
}
#if KEYS_BYTE_CHAR_SHORT_FLOAT
/**
* Returns whether an element returned by the given iterator satisfies the given predicate.
*
Short circuit evaluation is performed; the first {@code true} from the predicate terminates the loop.
* @return true if an element returned by {@code iterator} satisfies {@code predicate}.
* lambda to perform widening casts. Please use the type-specific overload to avoid this overhead.
*/
public static KEY_GENERIC boolean any(final KEY_ITERATOR KEY_GENERIC iterator, final JDK_PRIMITIVE_PREDICATE predicate) {
return any(iterator, predicate instanceof METHOD_ARG_PREDICATE ? (METHOD_ARG_PREDICATE) predicate : (METHOD_ARG_PREDICATE) predicate::test);
}
#endif
/**
* Returns whether all elements returned by the given iterator satisfy the given predicate.
*
Short circuit evaluation is performed; the first {@code false} from the predicate terminates the loop.
* @return true if all elements returned by {@code iterator} satisfy {@code predicate}.
*/
public static KEY_GENERIC boolean all(final STD_KEY_ITERATOR KEY_GENERIC iterator, final METHOD_ARG_PREDICATE predicate) {
Objects.requireNonNull(predicate);
do {
if (!iterator.hasNext()) return true;
} while (predicate.test(iterator.NEXT_KEY()));
return false;
}
#if KEYS_BYTE_CHAR_SHORT_FLOAT
/**
* Returns whether all elements returned by the given iterator satisfy the given predicate.
*
Short circuit evaluation is performed; the first {@code false} from the predicate terminates the loop.
* @return true if all elements returned by {@code iterator} satisfy {@code predicate}.
* @implNote Unless the argument is type-specific, this method will introduce an intermediary
* lambda to perform widening casts. Please use the type-specific overload to avoid this overhead.
*/
public static KEY_GENERIC boolean all(final KEY_ITERATOR KEY_GENERIC iterator, final JDK_PRIMITIVE_PREDICATE predicate) {
return all(iterator, predicate instanceof METHOD_ARG_PREDICATE ? (METHOD_ARG_PREDICATE) predicate : (METHOD_ARG_PREDICATE) predicate::test);
}
#endif
/**
* Returns the index of the first element returned by the given iterator that satisfies the given predicate, or −1 if
* no such element was found.
*
The next element returned by the iterator always considered element 0, even for
* {@link java.util.ListIterator ListIterators}. In other words {@link java.util.ListIterator#nextIndex
* ListIterator.nextIndex} is ignored.
* @return the index of the first element returned by {@code iterator} that satisfies {@code predicate}, or −1 if
* no such element was found.
*/
public static KEY_GENERIC int indexOf(final STD_KEY_ITERATOR KEY_GENERIC iterator, final METHOD_ARG_PREDICATE predicate) {
Objects.requireNonNull(predicate);
for (int i = 0; iterator.hasNext(); ++i) {
if (predicate.test(iterator.NEXT_KEY())) return i;
}
return -1;
}
#if KEYS_BYTE_CHAR_SHORT_FLOAT
/**
* Returns the index of the first element returned by the given iterator that satisfies the given predicate, or −1 if
* no such element was found.
*
The next element returned by the iterator always considered element 0, even for
* {@link java.util.ListIterator ListIterators}. In other words {@link java.util.ListIterator#nextIndex
* ListIterator.nextIndex} is ignored.
* @return the index of the first element returned by {@code iterator} that satisfies {@code predicate}, or −1 if
* no such element was found.
* @implNote Unless the argument is type-specific, this method will introduce an intermediary
* lambda to perform widening casts. Please use the type-specific overload to avoid this overhead.
*/
public static KEY_GENERIC int indexOf(final KEY_ITERATOR KEY_GENERIC iterator, final JDK_PRIMITIVE_PREDICATE predicate) {
return indexOf(iterator, predicate instanceof METHOD_ARG_PREDICATE ? (METHOD_ARG_PREDICATE) predicate : (METHOD_ARG_PREDICATE) predicate::test);
}
#endif
/**
* A skeletal implementation for an iterator backed by an index-based data store. High performance
* concrete implementations (like the main Iterator of ArrayList) generally should avoid using this
* and just implement the interface directly, but should be decent for less
* performance critical implementations.
*
*
This class is only appropriate for sequences that are at most {@link Integer#MAX_VALUE} long.
* If your backing data store can be bigger then this, consider the equivalently named class in
* the type specific {@code BigListIterators} class.
*
*
As the abstract methods in this class are used in inner loops, it is generally a
* good idea to override the class as {@code final} as to encourage the JVM to inline
* them (or alternatively, override the abstract methods as final).
*/
public static abstract class AbstractIndexBasedIterator KEY_GENERIC extends KEY_ABSTRACT_ITERATOR KEY_GENERIC {
/** The minimum pos can be, and is the logical start of the "range".
* Usually set to the initialPos unless it is a ListIterator, in which case it can vary.
*
* There isn't any way for a range to shift its beginning like the end can (through {@link #remove}),
* so this is final.
*/
protected final int minPos;
/** The current position index, the index of the item to be returned after the next call to {@link #next()}.
*
*
This value will be between {@code minPos} and {@link #getMaxPos()} (exclusive) (on a best effort, so concurrent
* structural modifications outside this iterator may cause this to be violated, but that usually invalidates
* iterators anyways). Thus {@code pos} being {@code minPos + 2} would mean {@link #next()}
* was called twice and the next call will return the third element of this iterator.
*/
protected int pos;
/** The last returned index by a call to {@link #next} or, if a list-iterator, {@link java.util.ListIterator#previous().
*
* It is −1 if no such call has occurred or a mutation has occurred through this iterator and no
* advancement has been done.
*/
protected int lastReturned;
protected AbstractIndexBasedIterator(int minPos, int initialPos) {
this.minPos = minPos;
this.pos = initialPos;
}
// When you implement these, you should probably declare them final to encourage the JVM to inline them.
/** Get the item corresponding to the given index location.
*
*
Do not advance {@link #pos} in this method; the default {@code next} method takes care of this.
*
*
The {@code location} given will be between {@code minPos} and {@link #getMaxPos()} (exclusive).
* Thus, a {@code location} of {@code minPos + 2} would mean {@link #next()} was called twice
* and this method should return what the next call to {@link #next()} should return.
*/
protected abstract KEY_GENERIC_TYPE get(int location);
/** Remove the item at the given index.
*
*
Do not modify {@link #pos} in this method; the default {@code #remove()} method takes care of this.
*
*
This method should also do what is needed to track the change to the {@link #getMaxPos}.
* Usually this is accomplished by having this method call the parent {@link Collection}'s appropriate remove
* method, and having {@link #getMaxPos} track the parent {@linkplain Collection#size() collection's size}.
*/
protected abstract void remove(int location);
/** The maximum pos can be, and is the logical end (exclusive) of the "range".
*
*
If pos is equal to the return of this method, this means the last element has been returned and the next call to {@link #next()} will throw.
*
*
Usually set return the parent {@linkplain Collection#size() collection's size}, but does not have to be
* (for example, sublists and subranges).
*/
protected abstract int getMaxPos();
@Override
public boolean hasNext() { return pos < getMaxPos(); }
@Override
public KEY_GENERIC_TYPE NEXT_KEY() { if (! hasNext()) throw new NoSuchElementException(); return get(lastReturned = pos++); }
@Override
public void remove() {
if (lastReturned == -1) throw new IllegalStateException();
remove(lastReturned);
/* If the last operation was a next(), we are removing an element *before* us, and we must decrease pos correspondingly. */
if (lastReturned < pos) pos--;
lastReturned = -1;
}
@Override
public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
while(pos < getMaxPos()) {
action.accept(get(lastReturned = pos++));
}
}
// TODO since this method doesn't depend on the type at all, should it be "hoisted" into a
// non type-specific superclass in it.unimi.dsi.fastutil?
@Override
public int skip(int n) {
if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n);
final int max = getMaxPos();
final int remaining = max - pos;
if (n < remaining) {
pos += n;
} else {
n = remaining;
pos = max;
}
lastReturned = pos - 1;
return n;
}
}
/**
* A skeletal implementation for a list-iterator backed by an index-based data store. High performance
* concrete implementations (like the main ListIterator of ArrayList) generally should avoid using this
* and just implement the interface directly, but should be decent for less
* performance critical implementations.
*
*
This class is only appropriate for sequences that are at most {@link Integer#MAX_VALUE} long.
* If your backing data store can be bigger then this, consider the equivalently named class in
* the type specific {@code BigListSpliterators} class.
*
*
As the abstract methods in this class are used in inner loops, it is generally a
* good idea to override the class as {@code final} as to encourage the JVM to inline
* them (or alternatively, override the abstract methods as final).
*/
public static abstract class AbstractIndexBasedListIterator KEY_GENERIC extends AbstractIndexBasedIterator KEY_GENERIC implements KEY_LIST_ITERATOR KEY_GENERIC {
protected AbstractIndexBasedListIterator(int minPos, int initialPos) {
super(minPos, initialPos);
}
// When you implement these, you should probably declare them final to encourage the JVM to inline them.
/** Add the given item at the given index.
*
*
This method should also do what is needed to track the change to the {@link #getMaxPos}.
* Usually this is accomplished by having this method call the parent {@link Collection}'s appropriate add
* method, and having {@link #getMaxPos} track the parent {@linkplain Collection#size() collection's size}.
*
*
Do not modify {@link #pos} in this method; the default {@code #add()} method takes care of this.
*
*
See {@link #pos} and {@link #get(int)} for discussion on what the location means.
*/
protected abstract void add(int location, KEY_GENERIC_TYPE k);
/** Sets the given item at the given index.
*
*
See {@link #pos} and {@link #get(int)} for discussion on what the location means.
*/
protected abstract void set(int location, KEY_GENERIC_TYPE k);
@Override
public boolean hasPrevious() { return pos > minPos; }
@Override
public KEY_GENERIC_TYPE PREV_KEY() { if (! hasPrevious()) throw new NoSuchElementException(); return get(lastReturned = --pos); }
@Override
public int nextIndex() { return pos; }
@Override
public int previousIndex() { return pos - 1; }
@Override
public void add(final KEY_GENERIC_TYPE k) {
add(pos++, k);
lastReturned = -1;
}
@Override
public void set(final KEY_GENERIC_TYPE k) {
if (lastReturned == -1) throw new IllegalStateException();
set(lastReturned, k);
}
// TODO since this method doesn't depend on the type at all, should it be "hoisted" into a
// non type-specific superclass in it.unimi.dsi.fastutil?
@Override
public int back(int n) {
if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n);
final int remaining = pos - minPos;
if (n < remaining) {
pos -= n;
} else {
n = remaining;
pos = minPos;
}
lastReturned = pos;
return n;
}
}
#if KEY_CLASS_Integer || KEY_CLASS_Byte || KEY_CLASS_Short || KEY_CLASS_Character || KEY_CLASS_Long
#if KEY_CLASS_Long
private static class IntervalIterator implements KEY_BIDI_ITERATOR {
#else
private static class IntervalIterator implements KEY_LIST_ITERATOR {
#endif
private final KEY_TYPE from, to;
KEY_TYPE curr;
public IntervalIterator(final KEY_TYPE from, final KEY_TYPE to) {
this.from = this.curr = from;
this.to = to;
}
@Override
public boolean hasNext() { return curr < to; }
@Override
public boolean hasPrevious() { return curr > from; }
@Override
public KEY_TYPE NEXT_KEY() {
if (! hasNext()) throw new NoSuchElementException();
return curr++;
}
@Override
public KEY_TYPE PREV_KEY() {
if (! hasPrevious()) throw new NoSuchElementException();
return --curr;
}
@Override
#if KEYS_PRIMITIVE
public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
#else // ! KEY_PRIMITIVE == KEY_REFERENCE
public void forEachRemaining(final Consumer super KEY_GENERIC_CLASS> action) {
#endif
Objects.requireNonNull(action);
for (; curr < to; ++curr) {
action.accept(curr);
}
}
#if ! KEY_CLASS_Long
@Override
public int nextIndex() { return curr - from; }
@Override
public int previousIndex() { return curr - from - 1; }
#endif
@Override
public int skip(int n) {
if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n);
if (curr + n <= to) {
curr += n;
return n;
}
#if ! KEY_CLASS_Long
n = to - curr;
#else
n = (int)(to - curr);
#endif
curr = to;
return n;
}
@Override
public int back(int n) {
if (curr - n >= from) {
curr -= n;
return n;
}
#if ! KEY_CLASS_Long
n = curr - from ;
#else
n = (int)(curr - from);
#endif
curr = from;
return n;
}
}
#if KEY_CLASS_Long
/** Creates a type-specific bidirectional iterator over an interval.
*
*
The type-specific bidirectional iterator returned by this method will return the
* elements {@code from}, {@code from+1},…, {@code to-1}.
*
*
Note that all other type-specific interval iterator are list
* iterators. Of course, this is not possible with longs as the index
* returned by {@link java.util.ListIterator#nextIndex() nextIndex()}/{@link
* java.util.ListIterator#previousIndex() previousIndex()} would exceed an integer.
*
* @param from the starting element (inclusive).
* @param to the ending element (exclusive).
* @return a type-specific bidirectional iterator enumerating the elements from {@code from} to {@code to}.
*/
public static KEY_BIDI_ITERATOR fromTo(final KEY_TYPE from, final KEY_TYPE to) {
return new IntervalIterator(from, to);
}
#else
/** Creates a type-specific list iterator over an interval.
*
*
The type-specific list iterator returned by this method will return the
* elements {@code from}, {@code from+1},…, {@code to-1}.
*
* @param from the starting element (inclusive).
* @param to the ending element (exclusive).
* @return a type-specific list iterator enumerating the elements from {@code from} to {@code to}.
*/
public static KEY_LIST_ITERATOR fromTo(final KEY_TYPE from, final KEY_TYPE to) {
return new IntervalIterator(from, to);
}
#endif
#endif
private static class IteratorConcatenator KEY_GENERIC implements KEY_ITERATOR KEY_GENERIC {
final KEY_ITERATOR KEY_EXTENDS_GENERIC a[];
int offset, length, lastOffset = -1;
public IteratorConcatenator(final KEY_ITERATOR KEY_EXTENDS_GENERIC a[], int offset, int length) {
this.a = a;
this.offset = offset;
this.length = length;
advance();
}
private void advance() {
while(length != 0) {
if (a[offset].hasNext()) break;
length--;
offset++;
}
return;
}
@Override
public boolean hasNext() {
return length > 0;
}
@Override
public KEY_GENERIC_TYPE NEXT_KEY() {
if (! hasNext()) throw new NoSuchElementException();
KEY_GENERIC_TYPE next = a[lastOffset = offset].NEXT_KEY();
advance();
return next;
}
#if KEYS_PRIMITIVE
@Override
public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
while (length > 0) {
a[lastOffset = offset].forEachRemaining(action);
advance();
}
}
#endif
DEPRECATED_IF_KEYS_PRIMITIVE
@Override
public void forEachRemaining(final Consumer super KEY_GENERIC_CLASS> action) {
while (length > 0) {
a[lastOffset = offset].forEachRemaining(action);
advance();
}
}
@Override
public void remove() {
if (lastOffset == -1) throw new IllegalStateException();
a[lastOffset].remove();
}
@Override
public int skip(int n) {
if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n);
lastOffset = -1;
int skipped = 0;
while(skipped < n && length != 0) {
skipped += a[offset].skip(n - skipped);
if (a[offset].hasNext()) break;
length--;
offset++;
}
return skipped;
}
}
/** Concatenates all iterators contained in an array.
*
*
This method returns an iterator that will enumerate in order the elements returned
* by all iterators contained in the given array.
*
* @param a an array of iterators.
* @return an iterator obtained by concatenation.
*/
#if KEYS_REFERENCE
@SafeVarargs // Spliterators can only give K, never consume them, making this safe.
#endif
public static KEY_GENERIC KEY_ITERATOR KEY_GENERIC concat(final KEY_ITERATOR KEY_EXTENDS_GENERIC... a) {
return concat(a, 0, a.length);
}
/** Concatenates a sequence of iterators contained in an array.
*
*
This method returns an iterator that will enumerate in order the elements returned
* by {@code a[offset]}, then those returned
* by {@code a[offset + 1]}, and so on up to
* {@code a[offset + length - 1]}.
*
* @param a an array of iterators.
* @param offset the index of the first iterator to concatenate.
* @param length the number of iterators to concatenate.
* @return an iterator obtained by concatenation of {@code length} elements of {@code a} starting at {@code offset}.
*/
public static KEY_GENERIC KEY_ITERATOR KEY_GENERIC concat(final KEY_ITERATOR KEY_EXTENDS_GENERIC a[], final int offset, final int length) {
return new IteratorConcatenator KEY_GENERIC_DIAMOND(a, offset, length);
}
/** An unmodifiable wrapper class for iterators. */
public static class UnmodifiableIterator KEY_GENERIC implements KEY_ITERATOR KEY_GENERIC {
protected final KEY_ITERATOR KEY_EXTENDS_GENERIC i;
public UnmodifiableIterator(final KEY_ITERATOR KEY_EXTENDS_GENERIC i) {
this.i = i;
}
@Override
public boolean hasNext() { return i.hasNext(); }
@Override
public KEY_GENERIC_TYPE NEXT_KEY() { return i.NEXT_KEY(); }
#if KEYS_PRIMITIVE
@Override
public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
i.forEachRemaining(action);
}
#endif
DEPRECATED_IF_KEYS_PRIMITIVE
@Override
public void forEachRemaining(final Consumer super KEY_GENERIC_CLASS> action) {
i.forEachRemaining(action);
}
}
/** Returns an unmodifiable iterator backed by the specified iterator.
*
* @param i the iterator to be wrapped in an unmodifiable iterator.
* @return an unmodifiable view of the specified iterator.
*/
public static KEY_GENERIC KEY_ITERATOR KEY_GENERIC unmodifiable(final KEY_ITERATOR KEY_EXTENDS_GENERIC i) { return new UnmodifiableIterator KEY_GENERIC_DIAMOND(i); }
/** An unmodifiable wrapper class for bidirectional iterators. */
public static class UnmodifiableBidirectionalIterator KEY_GENERIC implements KEY_BIDI_ITERATOR KEY_GENERIC {
protected final KEY_BIDI_ITERATOR KEY_EXTENDS_GENERIC i;
public UnmodifiableBidirectionalIterator(final KEY_BIDI_ITERATOR KEY_EXTENDS_GENERIC i) {
this.i = i;
}
@Override
public boolean hasNext() { return i.hasNext(); }
@Override
public boolean hasPrevious() { return i.hasPrevious(); }
@Override
public KEY_GENERIC_TYPE NEXT_KEY() { return i.NEXT_KEY(); }
@Override
public KEY_GENERIC_TYPE PREV_KEY() { return i.PREV_KEY(); }
#if KEYS_PRIMITIVE
@Override
public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
i.forEachRemaining(action);
}
#endif
DEPRECATED_IF_KEYS_PRIMITIVE
@Override
public void forEachRemaining(final Consumer super KEY_GENERIC_CLASS> action) {
i.forEachRemaining(action);
}
}
/** Returns an unmodifiable bidirectional iterator backed by the specified bidirectional iterator.
*
* @param i the bidirectional iterator to be wrapped in an unmodifiable bidirectional iterator.
* @return an unmodifiable view of the specified bidirectional iterator.
*/
public static KEY_GENERIC KEY_BIDI_ITERATOR KEY_GENERIC unmodifiable(final KEY_BIDI_ITERATOR KEY_EXTENDS_GENERIC i) { return new UnmodifiableBidirectionalIterator KEY_GENERIC_DIAMOND(i); }
/** An unmodifiable wrapper class for list iterators. */
public static class UnmodifiableListIterator KEY_GENERIC implements KEY_LIST_ITERATOR KEY_GENERIC {
protected final KEY_LIST_ITERATOR KEY_EXTENDS_GENERIC i;
public UnmodifiableListIterator(final KEY_LIST_ITERATOR KEY_EXTENDS_GENERIC i) {
this.i = i;
}
@Override
public boolean hasNext() { return i.hasNext(); }
@Override
public boolean hasPrevious() { return i.hasPrevious(); }
@Override
public KEY_GENERIC_TYPE NEXT_KEY() { return i.NEXT_KEY(); }
@Override
public KEY_GENERIC_TYPE PREV_KEY() { return i.PREV_KEY(); }
@Override
public int nextIndex() { return i.nextIndex(); }
@Override
public int previousIndex() { return i.previousIndex(); }
#if KEYS_PRIMITIVE
@Override
public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
i.forEachRemaining(action);
}
#endif
DEPRECATED_IF_KEYS_PRIMITIVE
@Override
public void forEachRemaining(final Consumer super KEY_GENERIC_CLASS> action) {
i.forEachRemaining(action);
}
}
/** Returns an unmodifiable list iterator backed by the specified list iterator.
*
* @param i the list iterator to be wrapped in an unmodifiable list iterator.
* @return an unmodifiable view of the specified list iterator.
*/
public static KEY_GENERIC KEY_LIST_ITERATOR KEY_GENERIC unmodifiable(final KEY_LIST_ITERATOR KEY_EXTENDS_GENERIC i) { return new UnmodifiableListIterator KEY_GENERIC_DIAMOND(i); }
#if KEY_CLASS_Short || KEY_CLASS_Integer || KEY_CLASS_Long || KEY_CLASS_Float || KEY_CLASS_Double
/** A wrapper promoting the results of a ByteIterator. */
private final static class ByteIteratorWrapper implements KEY_ITERATOR {
final it.unimi.dsi.fastutil.bytes.ByteIterator iterator;
public ByteIteratorWrapper(final it.unimi.dsi.fastutil.bytes.ByteIterator iterator) {
this.iterator = iterator;
}
@Override
public boolean hasNext() { return iterator.hasNext(); }
@Deprecated
@Override
public KEY_GENERIC_CLASS next() { return KEY_GENERIC_CLASS.valueOf(iterator.nextByte()); }
@Override
public KEY_TYPE NEXT_KEY() { return iterator.nextByte(); }
@Override
public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
Objects.requireNonNull(action);
iterator.forEachRemaining(action::accept);
}
@Override
public void remove() { iterator.remove(); }
@Override
public int skip(final int n) { return iterator.skip(n); }
}
/** Returns an iterator backed by the specified byte iterator.
* @param iterator a byte iterator.
* @return an iterator backed by the specified byte iterator.
*/
public static KEY_ITERATOR wrap(final it.unimi.dsi.fastutil.bytes.ByteIterator iterator) {
return new ByteIteratorWrapper(iterator);
}
#endif
#if KEY_CLASS_Integer || KEY_CLASS_Long || KEY_CLASS_Float || KEY_CLASS_Double
/** A wrapper promoting the results of a ShortIterator. */
private final static class ShortIteratorWrapper implements KEY_ITERATOR {
final it.unimi.dsi.fastutil.shorts.ShortIterator iterator;
public ShortIteratorWrapper(final it.unimi.dsi.fastutil.shorts.ShortIterator iterator) {
this.iterator = iterator;
}
@Override
public boolean hasNext() { return iterator.hasNext(); }
@Deprecated
@Override
public KEY_GENERIC_CLASS next() { return KEY_GENERIC_CLASS.valueOf(iterator.nextShort()); }
@Override
public KEY_TYPE NEXT_KEY() { return iterator.nextShort(); }
@Override
public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
Objects.requireNonNull(action);
iterator.forEachRemaining(action::accept);
}
@Override
public void remove() { iterator.remove(); }
@Override
public int skip(final int n) { return iterator.skip(n); }
}
/** Returns an iterator backed by the specified short iterator.
* @param iterator a short iterator.
* @return an iterator backed by the specified short iterator.
*/
public static KEY_ITERATOR wrap(final it.unimi.dsi.fastutil.shorts.ShortIterator iterator) {
return new ShortIteratorWrapper(iterator);
}
#endif
#if KEY_CLASS_Integer || KEY_CLASS_Long || KEY_CLASS_Float || KEY_CLASS_Double
/** A wrapper promoting the results of a CharIterator. */
private final static class CharIteratorWrapper implements KEY_ITERATOR {
final it.unimi.dsi.fastutil.chars.CharIterator iterator;
public CharIteratorWrapper(final it.unimi.dsi.fastutil.chars.CharIterator iterator) {
this.iterator = iterator;
}
@Override
public boolean hasNext() { return iterator.hasNext(); }
@Deprecated
@Override
public KEY_GENERIC_CLASS next() { return KEY_GENERIC_CLASS.valueOf(iterator.nextChar()); }
@Override
public KEY_TYPE NEXT_KEY() { return iterator.nextChar(); }
@Override
public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
Objects.requireNonNull(action);
iterator.forEachRemaining(action::accept);
}
@Override
public void remove() { iterator.remove(); }
@Override
public int skip(final int n) { return iterator.skip(n); }
}
/** Returns an iterator backed by the specified char iterator.
*
*
WARNING: This is not the same as converting the source to a sequence
* of code points. This returned instance literally performs {@code (int)(charValue)} casts.
* Surrogate pairs will be left as separate elements instead of combined into a single element
* with the code point it represents. See {@link Character} for more discussion on code points,
* char values, and surrogate pairs.
*
* @param iterator a char iterator.
* @return an iterator backed by the specified char iterator.
*/
public static KEY_ITERATOR wrap(final it.unimi.dsi.fastutil.chars.CharIterator iterator) {
return new CharIteratorWrapper(iterator);
}
#endif
#if KEY_CLASS_Long || KEY_CLASS_Double
/** A wrapper promoting the results of an IntIterator. */
private final static class IntIteratorWrapper implements KEY_ITERATOR {
final it.unimi.dsi.fastutil.ints.IntIterator iterator;
public IntIteratorWrapper(final it.unimi.dsi.fastutil.ints.IntIterator iterator) {
this.iterator = iterator;
}
@Override
public boolean hasNext() { return iterator.hasNext(); }
@Deprecated
@Override
public KEY_GENERIC_CLASS next() { return KEY_GENERIC_CLASS.valueOf(iterator.nextInt()); }
@Override
public KEY_TYPE NEXT_KEY() { return iterator.nextInt(); }
@Override
public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
Objects.requireNonNull(action);
iterator.forEachRemaining(action::accept);
}
@Override
public void remove() { iterator.remove(); }
@Override
public int skip(final int n) { return iterator.skip(n); }
}
/** Returns an iterator backed by the specified integer iterator.
* @param iterator an integer iterator.
* @return an iterator backed by the specified integer iterator.
*/
public static KEY_ITERATOR wrap(final it.unimi.dsi.fastutil.ints.IntIterator iterator) {
return new IntIteratorWrapper(iterator);
}
#endif
#if KEY_CLASS_Double
/** A wrapper promoting the results of a FloatIterator. */
private final static class FloatIteratorWrapper implements KEY_ITERATOR {
final it.unimi.dsi.fastutil.floats.FloatIterator iterator;
public FloatIteratorWrapper(final it.unimi.dsi.fastutil.floats.FloatIterator iterator) {
this.iterator = iterator;
}
@Override
public boolean hasNext() { return iterator.hasNext(); }
@Deprecated
@Override
public KEY_GENERIC_CLASS next() { return KEY_GENERIC_CLASS.valueOf(iterator.nextFloat()); }
@Override
public KEY_TYPE NEXT_KEY() { return iterator.nextFloat(); }
@Override
public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) {
Objects.requireNonNull(action);
iterator.forEachRemaining(action::accept);
}
@Override
public void remove() { iterator.remove(); }
@Override
public int skip(final int n) { return iterator.skip(n); }
}
/** Returns an iterator backed by the specified float iterator.
* @param iterator a float iterator.
* @return an iterator backed by the specified float iterator.
*/
public static KEY_ITERATOR wrap(final it.unimi.dsi.fastutil.floats.FloatIterator iterator) {
return new FloatIteratorWrapper(iterator);
}
#endif
}