All Downloads are FREE. Search and download functionalities are using the official Maven repository.

drv.ArraySet.drv Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists, and queues with a small memory footprint and fast operations; it provides also big (64-bit) arrays, sets, and lists, sorting algorithms, fast, practical I/O classes for binary and text files, and facilities for memory mapping large files. This jar (fastutil-core.jar) contains data structures based on integers, longs, doubles, and objects, only; fastutil.jar contains all classes. If you have both jars in your dependencies, this jar should be excluded.

There is a newer version: 8.5.14
Show newest version
/*
 * Copyright (C) 2007-2023 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


package PACKAGE;

import java.util.Collection;
import java.util.NoSuchElementException;
import java.util.Set;

#if KEYS_REFERENCE
import java.util.function.Consumer;
#endif


/** A simple, brute-force implementation of a set based on a backing array.
 *
 * 

The main purpose of this * implementation is that of wrapping cleanly the brute-force approach to the storage of a very * small number of items: just put them into an array and scan linearly to find an item. */ public class ARRAY_SET KEY_GENERIC extends ABSTRACT_SET KEY_GENERIC implements java.io.Serializable, Cloneable { private static final long serialVersionUID = 1L; /** The backing array (valid up to {@link #size}, excluded). */ protected transient KEY_TYPE[] a; /** The number of valid entries in {@link #a}. */ protected int size; /** Creates a new array set using the given backing array. The resulting set will have as many elements as the array. * *

It is the responsibility of the caller to ensure that the elements of {@code a} are distinct. * * @param a the backing array. */ public ARRAY_SET(final KEY_TYPE[] a) { this.a = a; size = a.length; } /** Creates a new empty array set. */ public ARRAY_SET() { this.a = ARRAYS.EMPTY_ARRAY; } /** Creates a new empty array set of given initial capacity. * * @param capacity the initial capacity. */ public ARRAY_SET(final int capacity) { this.a = new KEY_TYPE[capacity]; } /** Creates a new array set copying the contents of a given collection. * @param c a collection. */ public ARRAY_SET(COLLECTION KEY_GENERIC c) { this(c.size()); addAll(c); } /** Creates a new array set copying the contents of a given set. * @param c a collection. */ public ARRAY_SET(final Collection c) { this(c.size()); addAll(c); } /** Creates a new array set copying the contents of a given collection. * @param c a collection. */ public ARRAY_SET(SET KEY_GENERIC c) { this(c.size()); int i = 0; for(KEY_TYPE x : c) { a[i] = x; i++; } size = i; } /** Creates a new array set copying the contents of a given set. * @param c a collection. */ public ARRAY_SET(final Set c) { this(c.size()); int i = 0; for(KEY_GENERIC_CLASS x: c) { a[i] = KEY_CLASS2TYPE(x); i++; } size = i; } /** Creates a new array set using the given backing array and the given number of elements of the array. * *

It is the responsibility of the caller to ensure that the first {@code size} elements of {@code a} are distinct. * * @param a the backing array. * @param size the number of valid elements in {@code a}. */ public ARRAY_SET(final KEY_TYPE[] a, final int size) { this.a = a; this.size = size; if (size > a.length) throw new IllegalArgumentException("The provided size (" + size + ") is larger than or equal to the array size (" + a.length + ")"); } // The 0 and 1 arg overloads allow us to skip the temporary hash set creation. /** Creates a new empty array set. * * @return a new empty array set. */ public static KEY_GENERIC ARRAY_SET KEY_GENERIC of() { return ofUnchecked(); } /** Creates a new array set using the element given. * * @param e the element that the returned set will contain. * @return a new array set containing {@code e}. */ public static KEY_GENERIC ARRAY_SET KEY_GENERIC of(final KEY_GENERIC_TYPE e) { return ofUnchecked(e); } /** Creates a new array set using an array of elements. * *

Unlike the array accepting constructors, this method will throw if duplicate elements * are encountered. This adds a non-trivial validation burden. Use {@link #ofUnchecked} if you * know your input has no duplicates, which will skip this validation. * * @param a the backing array of the returned array set. * @throws IllegalArgumentException if there were duplicate entries. * @return a new array set containing the elements in {@code a}. */ SAFE_VARARGS public static KEY_GENERIC ARRAY_SET KEY_GENERIC of(final KEY_GENERIC_TYPE... a) { if (a.length == 2) { if (KEY_EQUALS(a[0], a[1])) { throw new IllegalArgumentException("Duplicate element: " + a[1]); } } else if (a.length > 2) { // Will throw on a duplicate entry for us. OPEN_HASH_SET.of(a); } return ofUnchecked(a); } /** Creates a new empty array set. * * @return a new empty array set. */ public static KEY_GENERIC ARRAY_SET KEY_GENERIC ofUnchecked() { return new ARRAY_SET KEY_GENERIC_DIAMOND(); } // No 1 element overload; we want the temporary array constructed for us in the varargs overload /** Creates a new array set using an array of elements. * *

It is the responsibility of the caller to ensure that the elements of {@code a} are distinct. * * @param a the backing array of the returned array set. * @return a new array set containing the elements in {@code a}. */ SAFE_VARARGS public static KEY_GENERIC ARRAY_SET KEY_GENERIC ofUnchecked(final KEY_GENERIC_TYPE... a) { return new ARRAY_SET KEY_GENERIC(a); } private int findKey(final KEY_TYPE o) { for(int i = size; i-- != 0;) if (KEY_EQUALS(a[i], o)) return i; return -1; } // TODO Maybe make this return a list-iterator like the LinkedXHashSets do? @Override SUPPRESS_WARNINGS_KEY_UNCHECKED public KEY_ITERATOR KEY_GENERIC iterator() { return new KEY_ITERATOR KEY_GENERIC () { int next = 0; @Override public boolean hasNext() { return next < size; } @Override public KEY_GENERIC_TYPE NEXT_KEY() { if (! hasNext()) throw new NoSuchElementException(); return KEY_GENERIC_CAST a[next++]; } @Override public void remove() { final int tail = size-- - next--; System.arraycopy(a, next + 1, a, next, tail); #if KEYS_REFERENCE a[size] = null; #endif } @Override public int skip(int n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); final int remaining = size - next; if (n < remaining) { next += n; return n; } n = remaining; next = size; return n; } }; } // If you update this, you will probably want to update ArrayList as well private final class Spliterator implements KEY_SPLITERATOR KEY_GENERIC { // Until we split, we will track the size of the set // Once we split, then we stop updating on structural modifications. // Aka, size is late-binding. boolean hasSplit = false; int pos, max; #ifdef TEST // Sentinal to make sure we don't accidentally use size when we mean max @Deprecated private final Object size = null; #endif public Spliterator() { this(0, ARRAY_SET.this.size, false); } private Spliterator(int pos, int max, boolean hasSplit) { assert pos <= max : "pos " + pos + " must be <= max " + max; this.pos = pos; this.max = max; this.hasSplit = hasSplit; } private int getWorkingMax() { return hasSplit ? max : ARRAY_SET.this.size; } @Override public int characteristics() { return SPLITERATORS.SET_SPLITERATOR_CHARACTERISTICS | java.util.Spliterator.SUBSIZED | java.util.Spliterator.ORDERED; } @Override public long estimateSize() { return getWorkingMax() - pos; } SUPPRESS_WARNINGS_KEY_UNCHECKED @Override public boolean tryAdvance(final METHOD_ARG_KEY_CONSUMER action) { if (pos >= getWorkingMax()) return false; action.accept(KEY_GENERIC_CAST a[pos++]); return true; } SUPPRESS_WARNINGS_KEY_UNCHECKED @Override public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { for (final int max = getWorkingMax(); pos < max; ++pos) { action.accept(KEY_GENERIC_CAST a[pos]); } } @Override public long skip(long n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); final int max = getWorkingMax(); if (pos >= max) return 0; final int remaining = max - pos; if (n < remaining) { pos = it.unimi.dsi.fastutil.SafeMath.safeLongToInt(pos + n); return n; } n = remaining; pos = max; return n; } @Override public KEY_SPLITERATOR KEY_GENERIC trySplit() { final int max = getWorkingMax(); int retLen = (max - pos) >> 1; if (retLen <= 1) return null; // Update instance max with the last seen list size (if needed) before continuing this.max = max; int myNewPos = pos + retLen; int retMax = myNewPos; int oldPos = pos; this.pos = myNewPos; this.hasSplit = true; return new Spliterator(oldPos, retMax, true); } } /** {@inheritDoc} * *

In addition to the usual trait of {@link java.util.Spliterator#DISTINCT DISTINCT} for * sets, the returned spliterator will also {@linkplain java.util.Spliterator#characteristics() report} * the trait {@link java.util.Spliterator#ORDERED ORDERED}. * *

The returned spliterator is late-binding; it will track structural changes * after the current item, up until the first {@link java.util.Spliterator#trySplit() trySplit()}, * at which point the maximum index will be fixed. *
Structural changes before the current item or after the first * {@link java.util.Spliterator#trySplit() trySplit()} will result in unspecified behavior. */ @Override public KEY_SPLITERATOR KEY_GENERIC spliterator() { return new Spliterator(); } @Override public boolean contains(final KEY_TYPE k) { return findKey(k) != -1; } @Override public int size() { return size; } @Override public boolean remove(final KEY_TYPE k) { final int pos = findKey(k); if (pos == -1) return false; final int tail = size - pos - 1; for(int i = 0; i < tail; i++) a[pos + i] = a[pos + i + 1]; size--; #if KEYS_REFERENCE a[size] = null; #endif return true; } @Override public boolean add(final KEY_GENERIC_TYPE k) { final int pos = findKey(k); if (pos != -1) return false; if (size == a.length) { final KEY_TYPE[] b = new KEY_TYPE[size == 0 ? 2 : size * 2]; for(int i = size; i-- != 0;) b[i] = a[i]; a = b; } a[size++] = k; return true; } @Override public void clear() { #if KEYS_REFERENCE java.util.Arrays.fill(a, 0, size, null); #endif size = 0; } @Override public boolean isEmpty() { return size == 0; } #if KEYS_PRIMITIVE @Override public KEY_TYPE[] TO_KEY_ARRAY() { if (size == 0) return ARRAYS.EMPTY_ARRAY; return java.util.Arrays.copyOf(a, size); } @Override public KEY_TYPE[] toArray(KEY_TYPE[] a) { if (a == null || a.length < size) a = new KEY_TYPE[size]; System.arraycopy(this.a, 0, a, 0, size); return a; } #else // KEYS_REFERENCE @Override public Object[] toArray() { final int size = size(); // A subtle part of the spec says the returned array must be Object[] exactly. if (size == 0) return it.unimi.dsi.fastutil.objects.ObjectArrays.EMPTY_ARRAY; return java.util.Arrays.copyOf(a, size, Object[].class); } SUPPRESS_WARNINGS_KEY_UNCHECKED @Override public T[] toArray(T[] a) { if (a == null) { a = (T[]) new Object[size]; } else if (a.length < size) { a = (T[]) java.lang.reflect.Array.newInstance(a.getClass().getComponentType(), size); } System.arraycopy(this.a, 0, a, 0, size); if (a.length > size) { a[size] = null; } return a; } #endif /** Returns a deep copy of this set. * *

This method performs a deep copy of this array set; the data stored in the * set, however, is not cloned. Note that this makes a difference only for object keys. * * @return a deep copy of this set. */ @Override SUPPRESS_WARNINGS_KEY_UNCHECKED public ARRAY_SET KEY_GENERIC clone() { ARRAY_SET KEY_GENERIC c; try { c = (ARRAY_SET KEY_GENERIC)super.clone(); } catch(CloneNotSupportedException cantHappen) { throw new InternalError(); } c.a = a.clone(); return c; } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { s.defaultWriteObject(); for(int i = 0; i < size; i++) s.WRITE_KEY(a[i]); } private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); a = new KEY_TYPE[size]; for(int i = 0; i < size; i++) a[i] = s.READ_KEY(); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy