All Downloads are FREE. Search and download functionalities are using the official Maven repository.

drv.LinkedOpenCustomHashMap.drv Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists, and queues with a small memory footprint and fast operations; it provides also big (64-bit) arrays, sets, and lists, sorting algorithms, fast, practical I/O classes for binary and text files, and facilities for memory mapping large files. This jar (fastutil-core.jar) contains data structures based on integers, longs, doubles, and objects, only; fastutil.jar contains all classes. If you have both jars in your dependencies, this jar should be excluded.

There is a newer version: 8.5.14
Show newest version
/*
 * Copyright (C) 2002-2023 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


package PACKAGE;

import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;

import java.util.Map;
import java.util.Arrays;
import java.util.NoSuchElementException;
import java.util.function.Consumer;

#if KEY_INDEX != VALUE_INDEX && VALUES_BYTE_CHAR_SHORT_FLOAT
import VALUE_PACKAGE.VALUE_CONSUMER;
#endif

#if KEY_INDEX != VALUE_INDEX && !(KEYS_REFERENCE && VALUES_REFERENCE)
import VALUE_PACKAGE.VALUE_COLLECTION;
import VALUE_PACKAGE.VALUE_ABSTRACT_COLLECTION;

#if VALUES_PRIMITIVE
import VALUE_PACKAGE.VALUE_ITERATOR;
import VALUE_PACKAGE.VALUE_SPLITERATOR;
import VALUE_PACKAGE.VALUE_SPLITERATORS;
#endif

#if VALUE_CLASS_Boolean
import it.unimi.dsi.fastutil.booleans.BooleanConsumer;
#endif
#endif

#ifdef Linked

import java.util.Comparator;

#if KEY_INDEX != VALUE_INDEX && !(KEYS_REFERENCE && VALUES_REFERENCE)
#if VALUES_PRIMITIVE
import VALUE_PACKAGE.VALUE_LIST_ITERATOR;
#else
import it.unimi.dsi.fastutil.objects.ObjectIterator;
#endif
#endif

#if ! KEYS_REFERENCE
import it.unimi.dsi.fastutil.objects.AbstractObjectSortedSet;
import it.unimi.dsi.fastutil.objects.ObjectListIterator;
import it.unimi.dsi.fastutil.objects.ObjectBidirectionalIterator;
import it.unimi.dsi.fastutil.objects.ObjectSpliterator;
import it.unimi.dsi.fastutil.objects.ObjectSpliterators;
import it.unimi.dsi.fastutil.objects.ObjectSortedSet;
#endif

/**  A type-specific linked hash map with with a fast, small-footprint implementation.
 *
 * 

Instances of this class use a hash table to represent a map. The table is * filled up to a specified load factor, and then doubled in size to * accommodate new entries. If the table is emptied below one fourth * of the load factor, it is halved in size; however, the table is never reduced to a * size smaller than that at creation time: this approach makes it * possible to create maps with a large capacity in which insertions and * deletions do not cause immediately rehashing. Moreover, halving is * not performed when deleting entries from an iterator, as it would interfere * with the iteration process. * *

Note that {@link #clear()} does not modify the hash table size. * Rather, a family of {@linkplain #trim() trimming * methods} lets you control the size of the table; this is particularly useful * if you reuse instances of this class. * *

Entries returned by the type-specific {@link #entrySet()} method implement * the suitable type-specific {@link it.unimi.dsi.fastutil.Pair Pair} interface; * only values are mutable. * *

Iterators generated by this map will enumerate pairs in the same order in which they * have been added to the map (addition of pairs whose key is already present * in the map does not change the iteration order). Note that this order has nothing in common with the natural * order of the keys. The order is kept by means of a doubly linked list, represented * via an array of longs parallel to the table. * *

This class implements the interface of a sorted map, so to allow easy * access of the iteration order: for instance, you can get the first key * in iteration order with {@code firstKey()} without having to create an * iterator; however, this class partially violates the {@link java.util.SortedMap} * contract because all submap methods throw an exception and {@link * #comparator()} returns always {@code null}. * *

Additional methods, such as {@code getAndMoveToFirst()}, make it easy * to use instances of this class as a cache (e.g., with LRU policy). * *

The iterators provided by the views of this class using are type-specific * {@linkplain java.util.ListIterator list iterators}, and can be started at any * element which is a key of the map, or * a {@link NoSuchElementException} exception will be thrown. * If, however, the provided element is not the first or last key in the * map, the first access to the list index will require linear time, as in the worst case * the entire key set must be scanned in iteration order to retrieve the positional * index of the starting key. If you use just the methods of a type-specific {@link it.unimi.dsi.fastutil.BidirectionalIterator}, * however, all operations will be performed in constant time. * * @see Hash * @see HashCommon */ public class OPEN_HASH_MAP KEY_VALUE_GENERIC extends ABSTRACT_SORTED_MAP KEY_VALUE_GENERIC implements java.io.Serializable, Cloneable, Hash { #else #if ! KEYS_REFERENCE import it.unimi.dsi.fastutil.objects.AbstractObjectSet; import it.unimi.dsi.fastutil.objects.ObjectIterator; import it.unimi.dsi.fastutil.objects.ObjectSpliterator; import it.unimi.dsi.fastutil.objects.ObjectSpliterators; #endif #ifdef Custom /** A type-specific hash map with a fast, small-footprint implementation whose {@linkplain it.unimi.dsi.fastutil.Hash.Strategy hashing strategy} * is specified at creation time. * *

Instances of this class use a hash table to represent a map. The table is * filled up to a specified load factor, and then doubled in size to * accommodate new entries. If the table is emptied below one fourth * of the load factor, it is halved in size; however, the table is never reduced to a * size smaller than that at creation time: this approach makes it * possible to create maps with a large capacity in which insertions and * deletions do not cause immediately rehashing. Moreover, halving is * not performed when deleting entries from an iterator, as it would interfere * with the iteration process. * *

Note that {@link #clear()} does not modify the hash table size. * Rather, a family of {@linkplain #trim() trimming * methods} lets you control the size of the table; this is particularly useful * if you reuse instances of this class. * *

Entries returned by the type-specific {@link #entrySet()} method implement * the suitable type-specific {@link it.unimi.dsi.fastutil.Pair Pair} interface; * only values are mutable. * * @see Hash * @see HashCommon */ public class OPEN_HASH_MAP KEY_VALUE_GENERIC extends ABSTRACT_MAP KEY_VALUE_GENERIC implements java.io.Serializable, Cloneable, Hash { #else /** A type-specific hash map with a fast, small-footprint implementation. * *

Instances of this class use a hash table to represent a map. The table is * filled up to a specified load factor, and then doubled in size to * accommodate new entries. If the table is emptied below one fourth * of the load factor, it is halved in size; however, the table is never reduced to a * size smaller than that at creation time: this approach makes it * possible to create maps with a large capacity in which insertions and * deletions do not cause immediately rehashing. Moreover, halving is * not performed when deleting entries from an iterator, as it would interfere * with the iteration process. * *

Note that {@link #clear()} does not modify the hash table size. * Rather, a family of {@linkplain #trim() trimming * methods} lets you control the size of the table; this is particularly useful * if you reuse instances of this class. * *

Entries returned by the type-specific {@link #entrySet()} method implement * the suitable type-specific {@link it.unimi.dsi.fastutil.Pair Pair} interface; * only values are mutable. * * @see Hash * @see HashCommon */ public class OPEN_HASH_MAP KEY_VALUE_GENERIC extends ABSTRACT_MAP KEY_VALUE_GENERIC implements java.io.Serializable, Cloneable, Hash { #endif #endif private static final long serialVersionUID = 0L; private static final boolean ASSERTS = ASSERTS_VALUE; /** The array of keys. */ protected transient KEY_GENERIC_TYPE[] key; /** The array of values. */ protected transient VALUE_GENERIC_TYPE[] value; /** The mask for wrapping a position counter. */ protected transient int mask; /** Whether this map contains the key zero. */ protected transient boolean containsNullKey; #ifdef Custom /** The hash strategy of this custom map. */ protected STRATEGY KEY_SUPER_GENERIC strategy; #endif #ifdef Linked /** The index of the first entry in iteration order. It is valid iff {@link #size} is nonzero; otherwise, it contains -1. */ protected transient int first = -1; /** The index of the last entry in iteration order. It is valid iff {@link #size} is nonzero; otherwise, it contains -1. */ protected transient int last = -1; /** For each entry, the next and the previous entry in iteration order, * stored as {@code ((prev & 0xFFFFFFFFL) << 32) | (next & 0xFFFFFFFFL)}. * The first entry contains predecessor -1, and the last entry * contains successor -1. */ protected transient long[] link; #endif /** The current table size. */ protected transient int n; /** Threshold after which we rehash. It must be the table size times {@link #f}. */ protected transient int maxFill; /** We never resize below this threshold, which is the construction-time {#n}. */ protected final transient int minN; /** Number of entries in the set (including the key zero, if present). */ protected int size; /** The acceptable load factor. */ protected final float f; #ifdef Linked /** Cached set of entries. */ protected transient FastSortedEntrySet KEY_VALUE_GENERIC entries; /** Cached set of keys. */ protected transient SORTED_SET KEY_GENERIC keys; #else /** Cached set of entries. */ protected transient FastEntrySet KEY_VALUE_GENERIC entries; /** Cached set of keys. */ protected transient SET KEY_GENERIC keys; #endif /** Cached collection of values. */ protected transient VALUE_COLLECTION VALUE_GENERIC values; #ifdef Custom /** Creates a new hash map. * *

The actual table size will be the least power of two greater than {@code expected}/{@code f}. * * @param expected the expected number of elements in the hash map. * @param f the load factor. * @param strategy the strategy. */ SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED public OPEN_HASH_MAP(final int expected, final float f, final STRATEGY KEY_SUPER_GENERIC strategy) { this.strategy = strategy; #else /** Creates a new hash map. * *

The actual table size will be the least power of two greater than {@code expected}/{@code f}. * * @param expected the expected number of elements in the hash map. * @param f the load factor. */ SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED public OPEN_HASH_MAP(final int expected, final float f) { #endif if (f <= 0 || f >= 1) throw new IllegalArgumentException("Load factor must be greater than 0 and smaller than 1"); if (expected < 0) throw new IllegalArgumentException("The expected number of elements must be nonnegative"); this.f = f; minN = n = arraySize(expected, f); mask = n - 1; maxFill = maxFill(n, f); key = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[n + 1]; value = VALUE_GENERIC_ARRAY_CAST new VALUE_TYPE[n + 1]; #ifdef Linked link = new long[n + 1]; #endif } #ifdef Custom /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * * @param expected the expected number of elements in the hash map. * @param strategy the strategy. */ public OPEN_HASH_MAP(final int expected, final STRATEGY KEY_SUPER_GENERIC strategy) { this(expected, DEFAULT_LOAD_FACTOR, strategy); } #else /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * * @param expected the expected number of elements in the hash map. */ public OPEN_HASH_MAP(final int expected) { this(expected, DEFAULT_LOAD_FACTOR); } #endif #ifdef Custom /** Creates a new hash map with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} entries * and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * @param strategy the strategy. */ public OPEN_HASH_MAP(final STRATEGY KEY_SUPER_GENERIC strategy) { this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR, strategy); } #else /** Creates a new hash map with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} entries * and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. */ public OPEN_HASH_MAP() { this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR); } #endif #ifdef Custom /** Creates a new hash map copying a given one. * * @param m a {@link Map} to be copied into the new hash map. * @param f the load factor. * @param strategy the strategy. */ public OPEN_HASH_MAP(final Map m, final float f, final STRATEGY KEY_SUPER_GENERIC strategy) { this(m.size(), f, strategy); putAll(m); } #else /** Creates a new hash map copying a given one. * * @param m a {@link Map} to be copied into the new hash map. * @param f the load factor. */ public OPEN_HASH_MAP(final Map m, final float f) { this(m.size(), f); putAll(m); } #endif #ifdef Custom /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given one. * * @param m a {@link Map} to be copied into the new hash map. * @param strategy the strategy. */ public OPEN_HASH_MAP(final Map m, final STRATEGY KEY_SUPER_GENERIC strategy) { this(m, DEFAULT_LOAD_FACTOR, strategy); } #else /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given one. * * @param m a {@link Map} to be copied into the new hash map. */ public OPEN_HASH_MAP(final Map m) { this(m, DEFAULT_LOAD_FACTOR); } #endif #ifdef Custom /** Creates a new hash map copying a given type-specific one. * * @param m a type-specific map to be copied into the new hash map. * @param f the load factor. * @param strategy the strategy. */ public OPEN_HASH_MAP(final MAP KEY_VALUE_GENERIC m, final float f, final STRATEGY KEY_SUPER_GENERIC strategy) { this(m.size(), f, strategy); putAll(m); } #else /** Creates a new hash map copying a given type-specific one. * * @param m a type-specific map to be copied into the new hash map. * @param f the load factor. */ public OPEN_HASH_MAP(final MAP KEY_VALUE_GENERIC m, final float f) { this(m.size(), f); putAll(m); } #endif #ifdef Custom /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given type-specific one. * * @param m a type-specific map to be copied into the new hash map. * @param strategy the strategy. */ public OPEN_HASH_MAP(final MAP KEY_VALUE_GENERIC m, final STRATEGY KEY_SUPER_GENERIC strategy) { this(m, DEFAULT_LOAD_FACTOR, strategy); } #else /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given type-specific one. * * @param m a type-specific map to be copied into the new hash map. */ public OPEN_HASH_MAP(final MAP KEY_VALUE_GENERIC m) { this(m, DEFAULT_LOAD_FACTOR); } #endif #ifdef Custom /** Creates a new hash map using the elements of two parallel arrays. * * @param k the array of keys of the new hash map. * @param v the array of corresponding values in the new hash map. * @param f the load factor. * @param strategy the strategy. * @throws IllegalArgumentException if {@code k} and {@code v} have different lengths. */ public OPEN_HASH_MAP(final KEY_GENERIC_TYPE[] k, final VALUE_GENERIC_TYPE[] v, final float f, final STRATEGY KEY_SUPER_GENERIC strategy) { this(k.length, f, strategy); if (k.length != v.length) throw new IllegalArgumentException("The key array and the value array have different lengths (" + k.length + " and " + v.length + ")"); for(int i = 0; i < k.length; i++) this.put(k[i], v[i]); } #else /** Creates a new hash map using the elements of two parallel arrays. * * @param k the array of keys of the new hash map. * @param v the array of corresponding values in the new hash map. * @param f the load factor. * @throws IllegalArgumentException if {@code k} and {@code v} have different lengths. */ public OPEN_HASH_MAP(final KEY_GENERIC_TYPE[] k, final VALUE_GENERIC_TYPE[] v, final float f) { this(k.length, f); if (k.length != v.length) throw new IllegalArgumentException("The key array and the value array have different lengths (" + k.length + " and " + v.length + ")"); for(int i = 0; i < k.length; i++) this.put(k[i], v[i]); } #endif #ifdef Custom /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using the elements of two parallel arrays. * * @param k the array of keys of the new hash map. * @param v the array of corresponding values in the new hash map. * @param strategy the strategy. * @throws IllegalArgumentException if {@code k} and {@code v} have different lengths. */ public OPEN_HASH_MAP(final KEY_GENERIC_TYPE[] k, final VALUE_GENERIC_TYPE[] v, final STRATEGY KEY_SUPER_GENERIC strategy) { this(k, v, DEFAULT_LOAD_FACTOR, strategy); } #else /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using the elements of two parallel arrays. * * @param k the array of keys of the new hash map. * @param v the array of corresponding values in the new hash map. * @throws IllegalArgumentException if {@code k} and {@code v} have different lengths. */ public OPEN_HASH_MAP(final KEY_GENERIC_TYPE[] k, final VALUE_GENERIC_TYPE[] v) { this(k, v, DEFAULT_LOAD_FACTOR); } #endif #ifdef Custom /** Returns the hashing strategy. * * @return the hashing strategy of this custom hash map. */ public STRATEGY KEY_SUPER_GENERIC strategy() { return strategy; } #endif private int realSize() { return containsNullKey ? size - 1 : size; } /** Ensures that this map can hold a certain number of keys without rehashing. * * @param capacity a number of keys; there will be no rehashing unless * the map {@linkplain #size() size} exceeds this number. */ public void ensureCapacity(final int capacity) { final int needed = arraySize(capacity, f); if (needed > n) rehash(needed); } private void tryCapacity(final long capacity) { final int needed = (int)Math.min(1 << 30, Math.max(2, HashCommon.nextPowerOfTwo((long)Math.ceil(capacity / f)))); if (needed > n) rehash(needed); } private VALUE_GENERIC_TYPE removeEntry(final int pos) { final VALUE_GENERIC_TYPE oldValue = value[pos]; #if VALUES_REFERENCE value[pos] = null; #endif size--; #ifdef Linked fixPointers(pos); #endif shiftKeys(pos); if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return oldValue; } private VALUE_GENERIC_TYPE removeNullEntry() { containsNullKey = false; #if KEYS_REFERENCE key[n] = null; #endif final VALUE_GENERIC_TYPE oldValue = value[n]; #if VALUES_REFERENCE value[n] = null; #endif size--; #ifdef Linked fixPointers(n); #endif if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return oldValue; } @Override public void putAll(Map m) { if (f <= .5) ensureCapacity(m.size()); // The resulting map will be sized for m.size() elements else tryCapacity(size() + m.size()); // The resulting map will be tentatively sized for size() + m.size() elements super.putAll(m); } SUPPRESS_WARNINGS_KEY_UNCHECKED private int find(final KEY_GENERIC_TYPE k) { if (KEY_EQUALS_NULL(k)) return containsNullKey ? n : -(n + 1); KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; int pos; // The starting point. if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH(k) & mask])) return -(pos + 1); if (KEY_EQUALS_NOT_NULL(k, curr)) return pos; // There's always an unused entry. while(true) { if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return -(pos + 1); if (KEY_EQUALS_NOT_NULL(k, curr)) return pos; } } private void insert(final int pos, final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v) { if (pos == n) containsNullKey = true; key[pos] = k; value[pos] = v; #ifdef Linked if (size == 0) { first = last = pos; // Special case of SET_UPPER_LOWER(link[pos], -1, -1); link[pos] = -1L; } else { SET_NEXT(link[last], pos); SET_UPPER_LOWER(link[pos], last, -1); last = pos; } #endif if (size++ >= maxFill) rehash(arraySize(size + 1, f)); if (ASSERTS) checkTable(); } @Override public VALUE_GENERIC_TYPE put(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v) { final int pos = find(k); if (pos < 0) { insert(-pos - 1, k, v); return defRetValue; } final VALUE_GENERIC_TYPE oldValue = value[pos]; value[pos] = v; return oldValue; } #if VALUE_CLASS_Byte || VALUE_CLASS_Short || VALUE_CLASS_Character || VALUE_CLASS_Integer || VALUE_CLASS_Long || VALUE_CLASS_Float || VALUE_CLASS_Double private VALUE_GENERIC_TYPE addToValue(final int pos, final VALUE_GENERIC_TYPE incr) { final VALUE_GENERIC_TYPE oldValue = value[pos]; #if VALUE_CLASS_Byte || VALUE_CLASS_Short || VALUE_CLASS_Character value[pos] = (VALUE_TYPE)(oldValue + incr); #else value[pos] = oldValue + incr; #endif return oldValue; } /** Adds an increment to value currently associated with a key. * *

Note that this method respects the {@linkplain #defaultReturnValue() default return value} semantics: when * called with a key that does not currently appears in the map, the key * will be associated with the default return value plus * the given increment. * * @param k the key. * @param incr the increment. * @return the old value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key. */ public VALUE_GENERIC_TYPE addTo(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE incr) { int pos; if (KEY_EQUALS_NULL(k)) { if (containsNullKey) return addToValue(n, incr); pos = n; containsNullKey = true; } else { KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; // The starting point. if (! KEY_IS_NULL(curr = key[pos = KEY2INTHASH(k) & mask])) { if (KEY_EQUALS_NOT_NULL(curr, k)) return addToValue(pos, incr); while(! KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) if (KEY_EQUALS_NOT_NULL(curr, k)) return addToValue(pos, incr); } } key[pos] = k; #if VALUE_CLASS_Byte || VALUE_CLASS_Short || VALUE_CLASS_Character value[pos] = (VALUE_TYPE)(defRetValue + incr); #else value[pos] = defRetValue + incr; #endif #ifdef Linked if (size == 0) { first = last = pos; // Special case of SET_UPPER_LOWER(link[pos], -1, -1); link[pos] = -1L; } else { SET_NEXT(link[last], pos); SET_UPPER_LOWER(link[pos], last, -1); last = pos; } #endif if (size++ >= maxFill) rehash(arraySize(size + 1, f)); if (ASSERTS) checkTable(); return defRetValue; } #endif /** Shifts left entries with the specified hash code, starting at the specified position, * and empties the resulting free entry. * * @param pos a starting position. */ protected final void shiftKeys(int pos) { // Shift entries with the same hash. int last, slot; KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; for(;;) { pos = ((last = pos) + 1) & mask; for(;;) { if (KEY_IS_NULL(curr = key[pos])) { key[last] = KEY_NULL; #if VALUES_REFERENCE value[last] = null; #endif return; } slot = KEY2INTHASH(curr) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } key[last] = curr; value[last] = value[pos]; #ifdef Linked fixPointers(pos, last); #endif } } @Override SUPPRESS_WARNINGS_KEY_UNCHECKED public VALUE_GENERIC_TYPE REMOVE_VALUE(final KEY_TYPE k) { if (KEY_EQUALS_NULL(KEY_GENERIC_CAST k)) { if (containsNullKey) return removeNullEntry(); return defRetValue; } KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; int pos; // The starting point. if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH_CAST(k) & mask])) return defRetValue; if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return removeEntry(pos); while(true) { if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return defRetValue; if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return removeEntry(pos); } } #ifdef Linked private VALUE_GENERIC_TYPE setValue(final int pos, final VALUE_GENERIC_TYPE v) { final VALUE_GENERIC_TYPE oldValue = value[pos]; value[pos] = v; return oldValue; } /** Removes the mapping associated with the first key in iteration order. * @return the value previously associated with the first key in iteration order. * @throws NoSuchElementException is this map is empty. */ public VALUE_GENERIC_TYPE REMOVE_FIRST_VALUE() { if (size == 0) throw new NoSuchElementException(); final int pos = first; // Abbreviated version of fixPointers(pos) if (size == 1) first = last = -1; else { first = GET_NEXT(link[pos]); if (0 <= first) { // Special case of SET_PREV(link[first], -1) link[first] |= (-1 & 0xFFFFFFFFL) << 32; } } size--; final VALUE_GENERIC_TYPE v = value[pos]; if (pos == n) { containsNullKey = false; #if KEYS_REFERENCE key[n] = null; #endif #if VALUES_REFERENCE value[n] = null; #endif } else shiftKeys(pos); if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return v; } /** Removes the mapping associated with the last key in iteration order. * @return the value previously associated with the last key in iteration order. * @throws NoSuchElementException is this map is empty. */ public VALUE_GENERIC_TYPE REMOVE_LAST_VALUE() { if (size == 0) throw new NoSuchElementException(); final int pos = last; // Abbreviated version of fixPointers(pos) if (size == 1) first = last = -1; else { last = GET_PREV(link[pos]); if (0 <= last) { // Special case of SET_NEXT(link[last], -1) link[last] |= -1 & 0xFFFFFFFFL; } } size--; final VALUE_GENERIC_TYPE v = value[pos]; if (pos == n) { containsNullKey = false; #if KEYS_REFERENCE key[n] = null; #endif #if VALUES_REFERENCE value[n] = null; #endif } else shiftKeys(pos); if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return v; } private void moveIndexToFirst(final int i) { if (size == 1 || first == i) return; if (last == i) { last = GET_PREV(link[i]); // Special case of SET_NEXT(link[last], -1); link[last] |= -1 & 0xFFFFFFFFL; } else { final long linki = link[i]; final int prev = GET_PREV(linki); final int next = GET_NEXT(linki); COPY_NEXT(link[prev], linki); COPY_PREV(link[next], linki); } SET_PREV(link[first], i); SET_UPPER_LOWER(link[i], -1, first); first = i; } private void moveIndexToLast(final int i) { if (size == 1 || last == i) return; if (first == i) { first = GET_NEXT(link[i]); // Special case of SET_PREV(link[first], -1); link[first] |= (-1 & 0xFFFFFFFFL) << 32; } else { final long linki = link[i]; final int prev = GET_PREV(linki); final int next = GET_NEXT(linki); COPY_NEXT(link[prev], linki); COPY_PREV(link[next], linki); } SET_NEXT(link[last], i); SET_UPPER_LOWER(link[i], last, -1); last = i; } /** Returns the value to which the given key is mapped; if the key is present, it is moved to the first position of the iteration order. * * @param k the key. * @return the corresponding value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key. */ public VALUE_GENERIC_TYPE getAndMoveToFirst(final KEY_GENERIC_TYPE k) { if (KEY_EQUALS_NULL(k)) { if (containsNullKey) { moveIndexToFirst(n); return value[n]; } return defRetValue; } KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; int pos; // The starting point. if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH(k) & mask])) return defRetValue; if (KEY_EQUALS_NOT_NULL(k, curr)) { moveIndexToFirst(pos); return value[pos]; } // There's always an unused entry. while(true) { if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return defRetValue; if (KEY_EQUALS_NOT_NULL(k, curr)) { moveIndexToFirst(pos); return value[pos]; } } } /** Returns the value to which the given key is mapped; if the key is present, it is moved to the last position of the iteration order. * * @param k the key. * @return the corresponding value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key. */ public VALUE_GENERIC_TYPE getAndMoveToLast(final KEY_GENERIC_TYPE k) { if (KEY_EQUALS_NULL(k)) { if (containsNullKey) { moveIndexToLast(n); return value[n]; } return defRetValue; } KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; int pos; // The starting point. if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH(k) & mask])) return defRetValue; if (KEY_EQUALS_NOT_NULL(k, curr)) { moveIndexToLast(pos); return value[pos]; } // There's always an unused entry. while(true) { if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return defRetValue; if (KEY_EQUALS_NOT_NULL(k, curr)) { moveIndexToLast(pos); return value[pos]; } } } /** Adds a pair to the map; if the key is already present, it is moved to the first position of the iteration order. * * @param k the key. * @param v the value. * @return the old value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key. */ public VALUE_GENERIC_TYPE putAndMoveToFirst(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v) { int pos; if (KEY_EQUALS_NULL(k)) { if (containsNullKey) { moveIndexToFirst(n); return setValue(n, v); } containsNullKey = true; pos = n; } else { KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; // The starting point. if (! KEY_IS_NULL(curr = key[pos = KEY2INTHASH(k) & mask])) { if (KEY_EQUALS_NOT_NULL(curr, k)) { moveIndexToFirst(pos); return setValue(pos, v); } while(! KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) if (KEY_EQUALS_NOT_NULL(curr, k)) { moveIndexToFirst(pos); return setValue(pos, v); } } } key[pos] = k; value[pos] = v; if (size == 0) { first = last = pos; // Special case of SET_UPPER_LOWER(link[pos], -1, -1); link[pos] = -1L; } else { SET_PREV(link[first], pos); SET_UPPER_LOWER(link[pos], -1, first); first = pos; } if (size++ >= maxFill) rehash(arraySize(size, f)); if (ASSERTS) checkTable(); return defRetValue; } /** Adds a pair to the map; if the key is already present, it is moved to the last position of the iteration order. * * @param k the key. * @param v the value. * @return the old value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key. */ public VALUE_GENERIC_TYPE putAndMoveToLast(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v) { int pos; if (KEY_EQUALS_NULL(k)) { if (containsNullKey) { moveIndexToLast(n); return setValue(n, v); } containsNullKey = true; pos = n; } else { KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; // The starting point. if (! KEY_IS_NULL(curr = key[pos = KEY2INTHASH(k) & mask])) { if (KEY_EQUALS_NOT_NULL(curr, k)) { moveIndexToLast(pos); return setValue(pos, v); } while(! KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) if (KEY_EQUALS_NOT_NULL(curr, k)) { moveIndexToLast(pos); return setValue(pos, v); } } } key[pos] = k; value[pos] = v; if (size == 0) { first = last = pos; // Special case of SET_UPPER_LOWER(link[pos], -1, -1); link[pos] = -1L; } else { SET_NEXT(link[last], pos); SET_UPPER_LOWER(link[pos], last, -1); last = pos; } if (size++ >= maxFill) rehash(arraySize(size, f)); if (ASSERTS) checkTable(); return defRetValue; } #endif @Override SUPPRESS_WARNINGS_KEY_UNCHECKED public VALUE_GENERIC_TYPE GET_VALUE(final KEY_TYPE k) { if (KEY_EQUALS_NULL(KEY_GENERIC_CAST k)) return containsNullKey ? value[n] : defRetValue; KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; int pos; // The starting point. if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH_CAST(k) & mask])) return defRetValue; if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return value[pos]; // There's always an unused entry. while(true) { if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return defRetValue; if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return value[pos]; } } @Override SUPPRESS_WARNINGS_KEY_UNCHECKED public boolean containsKey(final KEY_TYPE k) { if (KEY_EQUALS_NULL(KEY_GENERIC_CAST k)) return containsNullKey; KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; int pos; // The starting point. if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH_CAST(k) & mask])) return false; if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return true; // There's always an unused entry. while(true) { if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return false; if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return true; } } @Override public boolean containsValue(final VALUE_TYPE v) { final VALUE_GENERIC_TYPE value[] = this.value; final KEY_GENERIC_TYPE key[] = this.key; if (containsNullKey && VALUE_EQUALS(value[n], v)) return true; for(int i = n; i-- != 0;) if (! KEY_IS_NULL(key[i]) && VALUE_EQUALS(value[i], v)) return true; return false; } /** {@inheritDoc} */ @Override SUPPRESS_WARNINGS_KEY_UNCHECKED public VALUE_GENERIC_TYPE getOrDefault(final KEY_TYPE k, final VALUE_GENERIC_TYPE defaultValue) { if (KEY_EQUALS_NULL(KEY_GENERIC_CAST k)) return containsNullKey ? value[n] : defaultValue; KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; int pos; // The starting point. if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH_CAST(k) & mask])) return defaultValue; if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return value[pos]; // There's always an unused entry. while(true) { if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return defaultValue; if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return value[pos]; } } /** {@inheritDoc} */ @Override public VALUE_GENERIC_TYPE putIfAbsent(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v) { final int pos = find(k); if (pos >= 0) return value[pos]; insert(-pos - 1, k, v); return defRetValue; } /** {@inheritDoc} */ @Override SUPPRESS_WARNINGS_KEY_UNCHECKED public boolean remove(final KEY_TYPE k, final VALUE_TYPE v) { if (KEY_EQUALS_NULL(KEY_GENERIC_CAST k)) { if (containsNullKey && VALUE_EQUALS(v, value[n])) { removeNullEntry(); return true; } return false; } KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; int pos; // The starting point. if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH_CAST(k) & mask])) return false; if (KEY_EQUALS_NOT_NULL_CAST(k, curr) && VALUE_EQUALS(v, value[pos])) { removeEntry(pos); return true; } while(true) { if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return false; if (KEY_EQUALS_NOT_NULL_CAST(k, curr) && VALUE_EQUALS(v, value[pos])) { removeEntry(pos); return true; } } } /** {@inheritDoc} */ @Override public boolean replace(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE oldValue, final VALUE_GENERIC_TYPE v) { final int pos = find(k); if (pos < 0 || ! VALUE_EQUALS(oldValue, value[pos])) return false; value[pos] = v; return true; } /** {@inheritDoc} */ @Override public VALUE_GENERIC_TYPE replace(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v) { final int pos = find(k); if (pos < 0) return defRetValue; final VALUE_GENERIC_TYPE oldValue = value[pos]; value[pos] = v; return oldValue; } #ifdef JDK_PRIMITIVE_FUNCTION /** {@inheritDoc} */ @Override public VALUE_GENERIC_TYPE computeIfAbsent(final KEY_GENERIC_TYPE k, final JDK_PRIMITIVE_FUNCTION KEY_SUPER_GENERIC_VALUE_EXTENDS_GENERIC mappingFunction) { java.util.Objects.requireNonNull(mappingFunction); final int pos = find(k); if (pos >= 0) return value[pos]; final VALUE_GENERIC_TYPE newValue = VALUE_NARROWING(mappingFunction.JDK_PRIMITIVE_FUNCTION_APPLY(k)); insert(-pos -1, k, newValue); return newValue; } #endif /** {@inheritDoc} */ @Override public VALUE_GENERIC_TYPE computeIfAbsent(final KEY_GENERIC_TYPE key, final FUNCTION KEY_SUPER_GENERIC_VALUE_EXTENDS_GENERIC mappingFunction) { java.util.Objects.requireNonNull(mappingFunction); final int pos = find(key); if (pos >= 0) return value[pos]; if (!mappingFunction.containsKey(key)) return defRetValue; final VALUE_GENERIC_TYPE newValue = mappingFunction.GET_VALUE(key); insert(-pos -1, key, newValue); return newValue; } #if KEYS_PRIMITIVE && VALUES_PRIMITIVE /** {@inheritDoc} */ @Override public VALUE_GENERIC_TYPE computeIfAbsentNullable(final KEY_GENERIC_TYPE k, final JDK_KEY_TO_GENERIC_FUNCTION mappingFunction) { java.util.Objects.requireNonNull(mappingFunction); final int pos = find(k); if (pos >= 0) return value[pos]; final VALUE_GENERIC_CLASS newValue = mappingFunction.apply(k); if (newValue == null) return defRetValue; final VALUE_GENERIC_TYPE v = VALUE_CLASS2TYPE(newValue); insert(-pos - 1, k, v); return v; } #endif /** {@inheritDoc} */ @Override public VALUE_GENERIC_TYPE COMPUTE_IF_PRESENT(final KEY_GENERIC_TYPE k, final java.util.function.BiFunction remappingFunction) { java.util.Objects.requireNonNull(remappingFunction); final int pos = find(k); if (pos < 0) return defRetValue; #if VALUES_REFERENCE if (value[pos] == null) return defRetValue; #endif final VALUE_GENERIC_CLASS newValue = remappingFunction.apply(KEY2OBJ(k), VALUE2OBJ(value[pos])); if (newValue == null) { if (KEY_EQUALS_NULL(k)) removeNullEntry(); else removeEntry(pos); return defRetValue; } return value[pos] = VALUE_CLASS2TYPE(newValue); } /** {@inheritDoc} */ @Override public VALUE_GENERIC_TYPE COMPUTE(final KEY_GENERIC_TYPE k, final java.util.function.BiFunction remappingFunction) { java.util.Objects.requireNonNull(remappingFunction); final int pos = find(k); final VALUE_GENERIC_CLASS newValue = remappingFunction.apply(KEY2OBJ(k), pos >= 0 ? VALUE2OBJ(value[pos]) : null); if (newValue == null) { if (pos >= 0) { if (KEY_EQUALS_NULL(k)) removeNullEntry(); else removeEntry(pos); } return defRetValue; } VALUE_GENERIC_TYPE newVal = VALUE_CLASS2TYPE(newValue); if (pos < 0) { insert(-pos - 1, k, newVal); return newVal; } return value[pos] = newVal; } /** {@inheritDoc} */ @Override public VALUE_GENERIC_TYPE merge(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v, final java.util.function.BiFunction remappingFunction) { java.util.Objects.requireNonNull(remappingFunction); REQUIRE_VALUE_NON_NULL(v) final int pos = find(k); #if VALUES_PRIMITIVE if (pos < 0) { #else if (pos < 0 || value[pos] == null) { #endif if (pos < 0) insert(-pos - 1, k, v); else value[pos] = v; return v; } final VALUE_GENERIC_CLASS newValue = remappingFunction.apply(VALUE2OBJ(value[pos]), VALUE2OBJ(v)); if (newValue == null) { if (KEY_EQUALS_NULL(k)) removeNullEntry(); else removeEntry(pos); return defRetValue; } return value[pos] = VALUE_CLASS2TYPE(newValue); } /* Removes all elements from this map. * *

To increase object reuse, this method does not change the table size. * If you want to reduce the table size, you must use {@link #trim()}. * */ @Override public void clear() { if (size == 0) return; size = 0; containsNullKey = false; Arrays.fill(key, KEY_NULL); #if VALUES_REFERENCE Arrays.fill(value, null); #endif #ifdef Linked first = last = -1; #endif } @Override public int size() { return size; } @Override public boolean isEmpty() { return size == 0; } /** The entry class for a hash map does not record key and value, but * rather the position in the hash table of the corresponding entry. This * is necessary so that calls to {@link java.util.Map.Entry#setValue(Object)} are reflected in * the map */ final class MapEntry implements MAP.Entry KEY_VALUE_GENERIC, Map.Entry, PAIR KEY_VALUE_GENERIC { // The table index this entry refers to, or -1 if this entry has been deleted. int index; MapEntry(final int index) { this.index = index; } MapEntry() {} @Override public KEY_GENERIC_TYPE ENTRY_GET_KEY() { return key[index]; } @Override public KEY_GENERIC_TYPE PAIR_LEFT() { return key[index]; } @Override public VALUE_GENERIC_TYPE ENTRY_GET_VALUE() { return value[index]; } @Override public VALUE_GENERIC_TYPE PAIR_RIGHT() { return value[index]; } @Override public VALUE_GENERIC_TYPE setValue(final VALUE_GENERIC_TYPE v) { final VALUE_GENERIC_TYPE oldValue = value[index]; value[index] = v; return oldValue; } @Override public PAIR KEY_VALUE_GENERIC right(final VALUE_GENERIC_TYPE v) { value[index] = v; return this; } #if KEYS_PRIMITIVE /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override public KEY_GENERIC_CLASS getKey() { return KEY2OBJ(key[index]); } #endif #if VALUES_PRIMITIVE /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override public VALUE_GENERIC_CLASS getValue() { return VALUE2OBJ(value[index]); } /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override public VALUE_GENERIC_CLASS setValue(final VALUE_GENERIC_CLASS v) { return VALUE2OBJ(setValue(VALUE_CLASS2TYPE(v))); } #endif @SuppressWarnings("unchecked") @Override public boolean equals(final Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; return KEY_EQUALS(key[index], KEY_CLASS2TYPE(e.getKey())) && VALUE_EQUALS(value[index], VALUE_CLASS2TYPE(e.getValue())); } @Override public int hashCode() { return KEY2JAVAHASH(key[index]) ^ VALUE2JAVAHASH(value[index]); } @Override public String toString() { return key[index] + "=>" + value[index]; } } #ifdef Linked /** Modifies the {@link #link} vector so that the given entry is removed. * This method will complete in constant time. * * @param i the index of an entry. */ protected void fixPointers(final int i) { if (size == 0) { first = last = -1; return; } if (first == i) { first = GET_NEXT(link[i]); if (0 <= first) { // Special case of SET_PREV(link[first], -1) link[first] |= (-1 & 0xFFFFFFFFL) << 32; } return; } if (last == i) { last = GET_PREV(link[i]); if (0 <= last) { // Special case of SET_NEXT(link[last], -1) link[last] |= -1 & 0xFFFFFFFFL; } return; } final long linki = link[i]; final int prev = GET_PREV(linki); final int next = GET_NEXT(linki); COPY_NEXT(link[prev], linki); COPY_PREV(link[next], linki); } /** Modifies the {@link #link} vector for a shift from s to d. *

This method will complete in constant time. * * @param s the source position. * @param d the destination position. */ protected void fixPointers(int s, int d) { if (size == 1) { first = last = d; // Special case of SET_UPPER_LOWER(link[d], -1, -1) link[d] = -1L; return; } if (first == s) { first = d; SET_PREV(link[GET_NEXT(link[s])], d); link[d] = link[s]; return; } if (last == s) { last = d; SET_NEXT(link[GET_PREV(link[s])], d); link[d] = link[s]; return; } final long links = link[s]; final int prev = GET_PREV(links); final int next = GET_NEXT(links); SET_NEXT(link[prev], d); SET_PREV(link[next], d); link[d] = links; } /** Returns the first key of this map in iteration order. * * @return the first key in iteration order. */ @Override public KEY_GENERIC_TYPE FIRST_KEY() { if (size == 0) throw new NoSuchElementException(); return key[first]; } /** Returns the last key of this map in iteration order. * * @return the last key in iteration order. */ @Override public KEY_GENERIC_TYPE LAST_KEY() { if (size == 0) throw new NoSuchElementException(); return key[last]; } /** {@inheritDoc} * @implSpec This implementation just throws an {@link UnsupportedOperationException}.*/ @Override public SORTED_MAP KEY_VALUE_GENERIC tailMap(KEY_GENERIC_TYPE from) { throw new UnsupportedOperationException(); } /** {@inheritDoc} * @implSpec This implementation just throws an {@link UnsupportedOperationException}.*/ @Override public SORTED_MAP KEY_VALUE_GENERIC headMap(KEY_GENERIC_TYPE to) { throw new UnsupportedOperationException(); } /** {@inheritDoc} * @implSpec This implementation just throws an {@link UnsupportedOperationException}.*/ @Override public SORTED_MAP KEY_VALUE_GENERIC subMap(KEY_GENERIC_TYPE from, KEY_GENERIC_TYPE to) { throw new UnsupportedOperationException(); } /** {@inheritDoc} * @implSpec This implementation just returns {@code null}.*/ @Override public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return null; } /** A list iterator over a linked map. * *

This class provides a list iterator over a linked hash map. The constructor runs in constant time. */ private abstract class MapIterator { /** The entry that will be returned by the next call to {@link java.util.ListIterator#previous()} (or {@code null} if no previous entry exists). */ int prev = -1; /** The entry that will be returned by the next call to {@link java.util.ListIterator#next()} (or {@code null} if no next entry exists). */ int next = -1; /** The last entry that was returned (or -1 if we did not iterate or used {@link java.util.Iterator#remove()}). */ int curr = -1; /** The current index (in the sense of a {@link java.util.ListIterator}). Note that this value is not meaningful when this iterator has been created using the nonempty constructor.*/ int index = -1; @SuppressWarnings("unused") abstract void acceptOnIndex(final ConsumerType action, final int index); protected MapIterator() { next = first; index = 0; } private MapIterator(final KEY_GENERIC_TYPE from) { if (KEY_EQUALS_NULL(from)) { if (OPEN_HASH_MAP.this.containsNullKey) { next = GET_NEXT(link[n]); prev = n; return; } else throw new NoSuchElementException("The key " + from + " does not belong to this map."); } if (KEY_EQUALS(key[last], from)) { prev = last; index = size; return; } // The starting point. int pos = KEY2INTHASH(from) & mask; // There's always an unused entry. while(! KEY_IS_NULL(key[pos])) { if (KEY_EQUALS_NOT_NULL(key[pos], from)) { // Note: no valid index known. next = GET_NEXT(link[pos]); prev = pos; return; } pos = (pos + 1) & mask; } throw new NoSuchElementException("The key " + from + " does not belong to this map."); } public boolean hasNext() { return next != -1; } public boolean hasPrevious() { return prev != -1; } private final void ensureIndexKnown() { if (index >= 0) return; if (prev == -1) { index = 0; return; } if (next == -1) { index = size; return; } int pos = first; index = 1; while(pos != prev) { pos = GET_NEXT(link[pos]); index++; } } public int nextIndex() { ensureIndexKnown(); return index; } public int previousIndex() { ensureIndexKnown(); return index - 1; } public int nextEntry() { if (! hasNext()) throw new NoSuchElementException(); curr = next; next = GET_NEXT(link[curr]); prev = curr; if (index >= 0) index++; return curr; } public int previousEntry() { if (! hasPrevious()) throw new NoSuchElementException(); curr = prev; prev = GET_PREV(link[curr]); next = curr; if (index >= 0) index--; return curr; } public void forEachRemaining(final ConsumerType action) { while (hasNext()) { curr = next; next = GET_NEXT(link[curr]); prev = curr; if (index >= 0) index++; acceptOnIndex(action, curr); } } public void remove() { ensureIndexKnown(); if (curr == -1) throw new IllegalStateException(); if (curr == prev) { /* If the last operation was a next(), we are removing an entry that preceeds the current index, and thus we must decrement it. */ index--; prev = GET_PREV(link[curr]); } else next = GET_NEXT(link[curr]); size--; /* Now we manually fix the pointers. Because of our knowledge of next and prev, this is going to be faster than calling fixPointers(). */ if (prev == -1) first = next; else SET_NEXT(link[prev], next); if (next == -1) last = prev; else SET_PREV(link[next], prev); int last, slot, pos = curr; curr = -1; if (pos == n) { OPEN_HASH_MAP.this.containsNullKey = false; #if KEYS_REFERENCE key[n] = null; #endif #if VALUES_REFERENCE value[n] = null; #endif } else { KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = OPEN_HASH_MAP.this.key; // We have to horribly duplicate the shiftKeys() code because we need to update next/prev. for(;;) { pos = ((last = pos) + 1) & mask; for(;;) { if (KEY_IS_NULL(curr = key[pos])) { key[last] = KEY_NULL; #if VALUES_REFERENCE value[last] = null; #endif return; } slot = KEY2INTHASH(curr) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } key[last] = curr; value[last] = value[pos]; if (next == pos) next = last; if (prev == pos) prev = last; fixPointers(pos, last); } } } public int skip(final int n) { int i = n; while(i-- != 0 && hasNext()) nextEntry(); return n - i - 1; } public int back(final int n) { int i = n; while(i-- != 0 && hasPrevious()) previousEntry(); return n - i - 1; } public void set(@SuppressWarnings("unused") MAP.Entry KEY_VALUE_GENERIC ok) { throw new UnsupportedOperationException(); } public void add(@SuppressWarnings("unused") MAP.Entry KEY_VALUE_GENERIC ok) { throw new UnsupportedOperationException(); } } private final class EntryIterator extends MapIterator> implements ObjectListIterator { private MapEntry entry; public EntryIterator() {} public EntryIterator(KEY_GENERIC_TYPE from) { super(from); } // forEachRemaining inherited from MapIterator superclass. @Override final void acceptOnIndex(final Consumer action, final int index) { action.accept(new MapEntry(index)); } @Override public MapEntry next() { return entry = new MapEntry(nextEntry()); } @Override public MapEntry previous() { return entry = new MapEntry(previousEntry()); } @Override public void remove() { super.remove(); entry.index = -1; // You cannot use a deleted entry. } } private final class FastEntryIterator extends MapIterator> implements ObjectListIterator { final MapEntry entry = new MapEntry(); public FastEntryIterator() {} public FastEntryIterator(KEY_GENERIC_TYPE from) { super(from); } // forEachRemaining inherited from MapIterator superclass. @Override final void acceptOnIndex(final Consumer action, final int index) { entry.index = index; action.accept(entry); } @Override public MapEntry next() { entry.index = nextEntry(); return entry; } @Override public MapEntry previous() { entry.index = previousEntry(); return entry; } } #else /** An iterator over a hash map. */ private abstract class MapIterator { /** The index of the last entry returned, if positive or zero; initially, {@link #n}. If negative, the last entry returned was that of the key of index {@code - pos - 1} from the {@link #wrapped} list. */ int pos = n; /** The index of the last entry that has been returned (more precisely, the value of {@link #pos} if {@link #pos} is positive, or {@link Integer#MIN_VALUE} if {@link #pos} is negative). It is -1 if either we did not return an entry yet, or the last returned entry has been removed. */ int last = -1; /** A downward counter measuring how many entries must still be returned. */ int c = size; /** A boolean telling us whether we should return the entry with the null key. */ boolean mustReturnNullKey = OPEN_HASH_MAP.this.containsNullKey; /** A lazily allocated list containing keys of entries that have wrapped around the table because of removals. */ ARRAY_LIST KEY_GENERIC wrapped; @SuppressWarnings("unused") abstract void acceptOnIndex(final ConsumerType action, final int index); public boolean hasNext() { return c != 0; } public int nextEntry() { if (! hasNext()) throw new NoSuchElementException(); c--; if (mustReturnNullKey) { mustReturnNullKey = false; return last = n; } final KEY_GENERIC_TYPE key[] = OPEN_HASH_MAP.this.key; for(;;) { if (--pos < 0) { // We are just enumerating elements from the wrapped list. last = Integer.MIN_VALUE; final KEY_GENERIC_TYPE k = wrapped.GET_KEY(- pos - 1); int p = KEY2INTHASH(k) & mask; while (! KEY_EQUALS_NOT_NULL(k, key[p])) p = (p + 1) & mask; return p; } if (! KEY_IS_NULL(key[pos])) return last = pos; } } public void forEachRemaining(final ConsumerType action) { if (mustReturnNullKey) { mustReturnNullKey = false; acceptOnIndex(action, last = n); c--; } final KEY_GENERIC_TYPE key[] = OPEN_HASH_MAP.this.key; while (c != 0) { if (--pos < 0) { // We are just enumerating elements from the wrapped list. last = Integer.MIN_VALUE; final KEY_GENERIC_TYPE k = wrapped.GET_KEY(- pos - 1); int p = KEY2INTHASH(k) & mask; while (! KEY_EQUALS_NOT_NULL(k, key[p])) p = (p + 1) & mask; acceptOnIndex(action, p); c--; } else if (! KEY_IS_NULL(key[pos])) { acceptOnIndex(action, last = pos); c--; } } } /** Shifts left entries with the specified hash code, starting at the specified position, * and empties the resulting free entry. * * @param pos a starting position. */ private void shiftKeys(int pos) { // Shift entries with the same hash. int last, slot; KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = OPEN_HASH_MAP.this.key; for(;;) { pos = ((last = pos) + 1) & mask; for(;;) { if (KEY_IS_NULL(curr = key[pos])) { key[last] = KEY_NULL; #if VALUES_REFERENCE value[last] = null; #endif return; } slot = KEY2INTHASH(curr) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } if (pos < last) { // Wrapped entry. if (wrapped == null) wrapped = new ARRAY_LIST KEY_GENERIC_DIAMOND(2); wrapped.add(key[pos]); } key[last] = curr; value[last] = value[pos]; } } public void remove() { if (last == -1) throw new IllegalStateException(); if (last == n) { containsNullKey = false; #if KEYS_REFERENCE key[n] = null; #endif #if VALUES_REFERENCE value[n] = null; #endif } else if (pos >= 0) shiftKeys(last); else { // We're removing wrapped entries. #if KEYS_REFERENCE OPEN_HASH_MAP.this.REMOVE_VALUE(wrapped.set(- pos - 1, null)); #else OPEN_HASH_MAP.this.REMOVE_VALUE(wrapped.GET_KEY(- pos - 1)); #endif last = -1; // Note that we must not decrement size return; } size--; last = -1; // You can no longer remove this entry. if (ASSERTS) checkTable(); } public int skip(final int n) { int i = n; while(i-- != 0 && hasNext()) nextEntry(); return n - i - 1; } } private final class EntryIterator extends MapIterator> implements ObjectIterator { private MapEntry entry; @Override public MapEntry next() { return entry = new MapEntry(nextEntry()); } // forEachRemaining inherited from MapIterator superclass. @Override final void acceptOnIndex(final Consumer action, final int index) { action.accept(entry = new MapEntry(index)); } @Override public void remove() { super.remove(); entry.index = -1; // You cannot use a deleted entry. } } private final class FastEntryIterator extends MapIterator> implements ObjectIterator { private final MapEntry entry = new MapEntry(); @Override public MapEntry next() { entry.index = nextEntry(); return entry; } // forEachRemaining inherited from MapIterator superclass. @Override final void acceptOnIndex(final Consumer action, final int index) { entry.index = index; action.accept(entry); } } private abstract class MapSpliterator> { /** The index (which bucket) of the next item to give to the action. * Unlike {@link SetIterator}, this counts up instead of down. */ int pos = 0; /** The maximum bucket (exclusive) to iterate to */ int max = n; /** An upwards counter counting how many we have given */ int c = 0; /** A boolean telling us whether we should return the null key. */ boolean mustReturnNull = OPEN_HASH_MAP.this.containsNullKey; boolean hasSplit = false; MapSpliterator() {} MapSpliterator(int pos, int max, boolean mustReturnNull, boolean hasSplit) { this.pos = pos; this.max = max; this.mustReturnNull = mustReturnNull; this.hasSplit = hasSplit; } abstract void acceptOnIndex(final ConsumerType action, final int index); abstract SplitType makeForSplit(int pos, int max, boolean mustReturnNull); public boolean tryAdvance(final ConsumerType action) { if (mustReturnNull) { mustReturnNull = false; ++c; acceptOnIndex(action, n); return true; } final KEY_GENERIC_TYPE key[] = OPEN_HASH_MAP.this.key; while (pos < max) { if (! KEY_IS_NULL(key[pos])) { ++c; acceptOnIndex(action, pos++); return true; } ++pos; } return false; } public void forEachRemaining(final ConsumerType action) { if (mustReturnNull) { mustReturnNull = false; ++c; acceptOnIndex(action, n); } final KEY_GENERIC_TYPE key[] = OPEN_HASH_MAP.this.key; while (pos < max) { if (! KEY_IS_NULL(key[pos])) { acceptOnIndex(action, pos); ++c; } ++pos; } } public long estimateSize() { if (!hasSplit) { // Root spliterator; we know how many are remaining. return size - c; } else { // After we split, we can no longer know exactly how many we have (or at least not efficiently). // (size / n) * (max - pos) aka currentTableDensity * numberOfBucketsLeft seems like a good estimate. return Math.min(size - c, (long)(((double)realSize() / n) * (max - pos)) + (mustReturnNull ? 1 : 0)); } } public SplitType trySplit() { if (pos >= max - 1) return null; int retLen = (max - pos) >> 1; if (retLen <= 1) return null; int myNewPos = pos + retLen; int retPos = pos; int retMax = myNewPos; // Since null is returned first, and the convention is that the returned split is the prefix of elements, // the split will take care of returning null (if needed), and we won't return it anymore. SplitType split = makeForSplit(retPos, retMax, mustReturnNull); this.pos = myNewPos; this.mustReturnNull = false; this.hasSplit = true; return split; } public long skip(long n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); if (n == 0) return 0; long skipped = 0; if (mustReturnNull) { mustReturnNull = false; ++skipped; --n; } final KEY_GENERIC_TYPE key[] = OPEN_HASH_MAP.this.key; while (pos < max && n > 0) { if (! KEY_IS_NULL(key[pos++])) { ++skipped; --n; } } return skipped; } } private final class EntrySpliterator extends MapSpliterator, EntrySpliterator> implements ObjectSpliterator { private static final int POST_SPLIT_CHARACTERISTICS = ObjectSpliterators.SET_SPLITERATOR_CHARACTERISTICS & ~java.util.Spliterator.SIZED; EntrySpliterator() {} EntrySpliterator(int pos, int max, boolean mustReturnNull, boolean hasSplit) { super(pos, max, mustReturnNull, hasSplit); } @Override public int characteristics() { return hasSplit ? POST_SPLIT_CHARACTERISTICS : ObjectSpliterators.SET_SPLITERATOR_CHARACTERISTICS; } @Override final void acceptOnIndex(final Consumer action, final int index) { action.accept(new MapEntry(index)); } @Override final EntrySpliterator makeForSplit(int pos, int max, boolean mustReturnNull) { return new EntrySpliterator(pos, max, mustReturnNull, true); } } #endif #ifdef Linked private final class MapEntrySet extends AbstractObjectSortedSet implements FastSortedEntrySet KEY_VALUE_GENERIC { private static final int SPLITERATOR_CHARACTERISTICS = ObjectSpliterators.SET_SPLITERATOR_CHARACTERISTICS | java.util.Spliterator.ORDERED; @Override public ObjectBidirectionalIterator iterator() { return new EntryIterator(); } /** {@inheritDoc} * *

There isn't a way to split efficiently while still preserving order for a linked data structure, * so this implementation is just backed by the iterator. Thus, this spliterator is not well optimized * for parallel streams. * *

Note, contrary to the specification of {@link java.util.SortedSet}, this spliterator does not, * report {@link java.util.Spliterators.SORTED}. This is because iteration order is based on insertion * order, not natural ordering. */ @Override public ObjectSpliterator spliterator() { return ObjectSpliterators.asSpliterator( iterator(), it.unimi.dsi.fastutil.Size64.sizeOf(OPEN_HASH_MAP.this), SPLITERATOR_CHARACTERISTICS); } @Override public Comparator comparator() { return null; } @Override public ObjectSortedSet subSet(MAP.Entry KEY_VALUE_GENERIC fromElement, MAP.Entry KEY_VALUE_GENERIC toElement) { throw new UnsupportedOperationException(); } @Override public ObjectSortedSet headSet(MAP.Entry KEY_VALUE_GENERIC toElement) { throw new UnsupportedOperationException(); } @Override public ObjectSortedSet tailSet(MAP.Entry KEY_VALUE_GENERIC fromElement) { throw new UnsupportedOperationException(); } @Override public MAP.Entry KEY_VALUE_GENERIC first() { if (size == 0) throw new NoSuchElementException(); return new MapEntry(OPEN_HASH_MAP.this.first); } @Override public MAP.Entry KEY_VALUE_GENERIC last() { if (size == 0) throw new NoSuchElementException(); return new MapEntry(OPEN_HASH_MAP.this.last); } #else private final class MapEntrySet extends AbstractObjectSet implements FastEntrySet KEY_VALUE_GENERIC { @Override public ObjectIterator iterator() { return new EntryIterator(); } @Override public ObjectIterator fastIterator() { return new FastEntryIterator(); } @Override public ObjectSpliterator spliterator() { return new EntrySpliterator(); } // #endif @Override SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED public boolean contains(final Object o) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry)o; #if KEYS_PRIMITIVE if (e.getKey() == null || ! (e.getKey() instanceof KEY_CLASS)) return false; #endif #if VALUES_PRIMITIVE if (e.getValue() == null || ! (e.getValue() instanceof VALUE_CLASS)) return false; #endif final KEY_GENERIC_TYPE k = KEY_OBJ2TYPE(KEY_GENERIC_CAST e.getKey()); final VALUE_GENERIC_TYPE v = VALUE_OBJ2TYPE(VALUE_GENERIC_CAST e.getValue()); if (KEY_EQUALS_NULL(k)) return OPEN_HASH_MAP.this.containsNullKey && VALUE_EQUALS(value[n], v); KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = OPEN_HASH_MAP.this.key; int pos; // The starting point. if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH(k) & mask])) return false; if (KEY_EQUALS_NOT_NULL(k, curr)) return VALUE_EQUALS(value[pos], v); // There's always an unused entry. while(true) { if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return false; if (KEY_EQUALS_NOT_NULL(k, curr)) return VALUE_EQUALS(value[pos], v); } } @Override SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED public boolean remove(final Object o) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry)o; #if KEYS_PRIMITIVE if (e.getKey() == null || ! (e.getKey() instanceof KEY_CLASS)) return false; #endif #if VALUES_PRIMITIVE if (e.getValue() == null || ! (e.getValue() instanceof VALUE_CLASS)) return false; #endif final KEY_GENERIC_TYPE k = KEY_OBJ2TYPE(KEY_GENERIC_CAST e.getKey()); final VALUE_GENERIC_TYPE v = VALUE_OBJ2TYPE(VALUE_GENERIC_CAST e.getValue()); if (KEY_EQUALS_NULL(k)) { if (containsNullKey && VALUE_EQUALS(value[n], v)) { removeNullEntry(); return true; } return false; } KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = OPEN_HASH_MAP.this.key; int pos; // The starting point. if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH(k) & mask])) return false; if (KEY_EQUALS_NOT_NULL(curr, k)) { if (VALUE_EQUALS(value[pos], v)) { removeEntry(pos); return true; } return false; } while(true) { if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return false; if (KEY_EQUALS_NOT_NULL(curr, k)) { if (VALUE_EQUALS(value[pos], v)) { removeEntry(pos); return true; } } } } @Override public int size() { return size; } @Override public void clear() { OPEN_HASH_MAP.this.clear(); } #ifdef Linked /** Returns a type-specific list iterator on the elements in this set, starting from a given element of the set. * Please see the class documentation for implementation details. * * @param from an element to start from. * @return a type-specific list iterator starting at the given element. * @throws IllegalArgumentException if {@code from} does not belong to the set. */ @Override public ObjectListIterator iterator(final MAP.Entry KEY_VALUE_GENERIC from) { return new EntryIterator(from.ENTRY_GET_KEY()); } /** Returns a type-specific fast list iterator on the elements in this set, starting from the first element. * Please see the class documentation for implementation details. * * @return a type-specific list iterator starting at the first element. */ @Override public ObjectListIterator fastIterator() { return new FastEntryIterator(); } /** Returns a type-specific fast list iterator on the elements in this set, starting from a given element of the set. * Please see the class documentation for implementation details. * * @param from an element to start from. * @return a type-specific list iterator starting at the given element. * @throws IllegalArgumentException if {@code from} does not belong to the set. */ @Override public ObjectListIterator fastIterator(final MAP.Entry KEY_VALUE_GENERIC from) { return new FastEntryIterator(from.ENTRY_GET_KEY()); } /** {@inheritDoc} */ @Override public void forEach(final Consumer consumer) { for(int i = size, curr, next = first; i-- != 0;) { curr = next; next = GET_NEXT(link[curr]); consumer.accept(new MapEntry(curr)); } } /** {@inheritDoc} */ @Override public void fastForEach(final Consumer consumer) { final MapEntry entry = new MapEntry(); for(int i = size, next = first; i-- != 0;) { entry.index = next; next = GET_NEXT(link[next]); consumer.accept(entry); } } #else /** {@inheritDoc} */ @Override public void forEach(final Consumer consumer) { if (containsNullKey) consumer.accept(new MapEntry(n)); for(int pos = n; pos-- != 0;) if (! KEY_IS_NULL(key[pos])) consumer.accept(new MapEntry(pos)); } /** {@inheritDoc} */ @Override public void fastForEach(final Consumer consumer) { final MapEntry entry = new MapEntry(); if (containsNullKey) { entry.index = n; consumer.accept(entry); } for(int pos = n; pos-- != 0;) if (! KEY_IS_NULL(key[pos])) { entry.index = pos; consumer.accept(entry); } } #endif } #ifdef Linked @Override public FastSortedEntrySet KEY_VALUE_GENERIC ENTRYSET() { if (entries == null) entries = new MapEntrySet(); #else @Override public FastEntrySet KEY_VALUE_GENERIC ENTRYSET() { if (entries == null) entries = new MapEntrySet(); #endif return entries; } /** An iterator on keys. * *

We simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods * (and possibly their type-specific counterparts) so that they return keys * instead of entries. */ #ifdef Linked private final class KeyIterator extends MapIterator implements KEY_LIST_ITERATOR KEY_GENERIC { public KeyIterator(final KEY_GENERIC_TYPE k) { super(k); } @Override public KEY_GENERIC_TYPE PREV_KEY() { return key[previousEntry()]; } #else private final class KeyIterator extends MapIterator implements KEY_ITERATOR KEY_GENERIC { #endif public KeyIterator() { super(); } // forEachRemaining inherited from MapIterator superclass. // Despite the superclass declared with generics, the way Java inherits and generates bridge methods avoids the boxing/unboxing @Override final void acceptOnIndex(final METHOD_ARG_KEY_CONSUMER action, final int index) { action.accept(key[index]); } @Override public KEY_GENERIC_TYPE NEXT_KEY() { return key[nextEntry()]; } } #ifndef Linked private final class KeySpliterator extends MapSpliterator implements KEY_SPLITERATOR KEY_GENERIC { private static final int POST_SPLIT_CHARACTERISTICS = SPLITERATORS.SET_SPLITERATOR_CHARACTERISTICS & ~java.util.Spliterator.SIZED; KeySpliterator() {} KeySpliterator(int pos, int max, boolean mustReturnNull, boolean hasSplit) { super(pos, max, mustReturnNull, hasSplit); } @Override public int characteristics() { return hasSplit ? POST_SPLIT_CHARACTERISTICS : SPLITERATORS.SET_SPLITERATOR_CHARACTERISTICS; } @Override final void acceptOnIndex(final METHOD_ARG_KEY_CONSUMER action, final int index) { action.accept(key[index]); } @Override final KeySpliterator makeForSplit(int pos, int max, boolean mustReturnNull) { return new KeySpliterator(pos, max, mustReturnNull, true); } } #endif #ifdef Linked private final class KeySet extends ABSTRACT_SORTED_SET KEY_GENERIC { private static final int SPLITERATOR_CHARACTERISTICS = SPLITERATORS.SET_SPLITERATOR_CHARACTERISTICS | java.util.Spliterator.ORDERED; @Override public KEY_LIST_ITERATOR KEY_GENERIC iterator(final KEY_GENERIC_TYPE from) { return new KeyIterator(from); } @Override public KEY_LIST_ITERATOR KEY_GENERIC iterator() { return new KeyIterator(); } /** {@inheritDoc} * @see EntrySet#spliterator() */ @Override public KEY_SPLITERATOR KEY_GENERIC spliterator() { return SPLITERATORS.asSpliterator( iterator(), it.unimi.dsi.fastutil.Size64.sizeOf(OPEN_HASH_MAP.this), SPLITERATOR_CHARACTERISTICS); } /** {@inheritDoc} */ @Override public void forEach(final METHOD_ARG_KEY_CONSUMER consumer) { for(int i = size, curr, next = first; i-- != 0;) { curr = next; next = GET_NEXT(link[curr]); consumer.accept(key[curr]); } } #else private final class KeySet extends ABSTRACT_SET KEY_GENERIC { @Override public KEY_ITERATOR KEY_GENERIC iterator() { return new KeyIterator(); } @Override public KEY_SPLITERATOR KEY_GENERIC spliterator() { return new KeySpliterator(); } /** {@inheritDoc} */ @Override public void forEach(final METHOD_ARG_KEY_CONSUMER consumer) { if (containsNullKey) consumer.accept(key[n]); for(int pos = n; pos-- != 0;) { final KEY_GENERIC_TYPE k = key[pos]; if (! KEY_IS_NULL(k)) consumer.accept(k); } } #endif @Override public int size() { return size; } @Override public boolean contains(KEY_TYPE k) { return containsKey(k); } @Override public boolean remove(KEY_TYPE k) { final int oldSize = size; OPEN_HASH_MAP.this.REMOVE_VALUE(k); return size != oldSize; } @Override public void clear() { OPEN_HASH_MAP.this.clear();} #ifdef Linked @Override public KEY_GENERIC_TYPE FIRST() { if (size == 0) throw new NoSuchElementException(); return key[first]; } @Override public KEY_GENERIC_TYPE LAST() { if (size == 0) throw new NoSuchElementException(); return key[last]; } @Override public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return null; } @Override public SORTED_SET KEY_GENERIC tailSet(KEY_GENERIC_TYPE from) { throw new UnsupportedOperationException(); } @Override public SORTED_SET KEY_GENERIC headSet(KEY_GENERIC_TYPE to) { throw new UnsupportedOperationException(); } @Override public SORTED_SET KEY_GENERIC subSet(KEY_GENERIC_TYPE from, KEY_GENERIC_TYPE to) { throw new UnsupportedOperationException(); } #endif } #ifdef Linked @Override public SORTED_SET KEY_GENERIC keySet() { #else @Override public SET KEY_GENERIC keySet() { #endif if (keys == null) keys = new KeySet(); return keys; } /** An iterator on values. * *

We simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods * (and possibly their type-specific counterparts) so that they return values * instead of entries. */ #ifdef Linked private final class ValueIterator extends MapIterator implements VALUE_LIST_ITERATOR VALUE_GENERIC { @Override public VALUE_GENERIC_TYPE PREV_VALUE() { return value[previousEntry()]; } #else private final class ValueIterator extends MapIterator implements VALUE_ITERATOR VALUE_GENERIC { #endif public ValueIterator() { super(); } // forEachRemaining inherited from MapIterator superclass. // Despite the superclass declared with generics, the way Java inherits and generates bridge methods avoids the boxing/unboxing @Override final void acceptOnIndex(final METHOD_ARG_VALUE_CONSUMER action, final int index) { action.accept(value[index]); } @Override public VALUE_GENERIC_TYPE NEXT_VALUE() { return value[nextEntry()]; } } #ifndef Linked private final class ValueSpliterator extends MapSpliterator implements VALUE_SPLITERATOR VALUE_GENERIC { private static final int POST_SPLIT_CHARACTERISTICS = VALUE_SPLITERATORS.COLLECTION_SPLITERATOR_CHARACTERISTICS & ~java.util.Spliterator.SIZED; ValueSpliterator() {} ValueSpliterator(int pos, int max, boolean mustReturnNull, boolean hasSplit) { super(pos, max, mustReturnNull, hasSplit); } @Override public int characteristics() { return hasSplit ? POST_SPLIT_CHARACTERISTICS : VALUE_SPLITERATORS.COLLECTION_SPLITERATOR_CHARACTERISTICS; } @Override final void acceptOnIndex(final METHOD_ARG_VALUE_CONSUMER action, final int index) { action.accept(value[index]); } @Override final ValueSpliterator makeForSplit(int pos, int max, boolean mustReturnNull) { return new ValueSpliterator(pos, max, mustReturnNull, true); } } #endif @Override public VALUE_COLLECTION VALUE_GENERIC values() { if (values == null) values = new VALUE_ABSTRACT_COLLECTION VALUE_GENERIC() { #ifdef Linked private static final int SPLITERATOR_CHARACTERISTICS = VALUE_SPLITERATORS.COLLECTION_SPLITERATOR_CHARACTERISTICS | java.util.Spliterator.ORDERED; #endif @Override public VALUE_ITERATOR VALUE_GENERIC iterator() { return new ValueIterator(); } #ifdef Linked /** {@inheritDoc} * @see EntrySet#spliterator() */ @Override public VALUE_SPLITERATOR VALUE_GENERIC spliterator() { return VALUE_SPLITERATORS.asSpliterator( iterator(), it.unimi.dsi.fastutil.Size64.sizeOf(OPEN_HASH_MAP.this), SPLITERATOR_CHARACTERISTICS); } /** {@inheritDoc} */ @Override public void forEach(final METHOD_ARG_VALUE_CONSUMER consumer) { for(int i = size, curr, next = first; i-- != 0;) { curr = next; next = GET_NEXT(link[curr]); consumer.accept(value[curr]); } } #else @Override public VALUE_SPLITERATOR VALUE_GENERIC spliterator() { return new ValueSpliterator(); } /** {@inheritDoc} */ @Override public void forEach(final METHOD_ARG_VALUE_CONSUMER consumer) { if (containsNullKey) consumer.accept(value[n]); for(int pos = n; pos-- != 0;) if (! KEY_IS_NULL(key[pos])) consumer.accept(value[pos]); } #endif @Override public int size() { return size; } @Override public boolean contains(VALUE_TYPE v) { return containsValue(v); } @Override public void clear() { OPEN_HASH_MAP.this.clear(); } }; return values; } /** Rehashes the map, making the table as small as possible. * *

This method rehashes the table to the smallest size satisfying the * load factor. It can be used when the set will not be changed anymore, so * to optimize access speed and size. * *

If the table size is already the minimum possible, this method * does nothing. * * @return true if there was enough memory to trim the map. * @see #trim(int) */ public boolean trim() { return trim(size); } /** Rehashes this map if the table is too large. * *

Let N be the smallest table size that can hold * max(n,{@link #size()}) entries, still satisfying the load factor. If the current * table size is smaller than or equal to N, this method does * nothing. Otherwise, it rehashes this map in a table of size * N. * *

This method is useful when reusing maps. {@linkplain #clear() Clearing a * map} leaves the table size untouched. If you are reusing a map * many times, you can call this method with a typical * size to avoid keeping around a very large table just * because of a few large transient maps. * * @param n the threshold for the trimming. * @return true if there was enough memory to trim the map. * @see #trim() */ public boolean trim(final int n) { final int l = HashCommon.nextPowerOfTwo((int)Math.ceil(n / f)); if (l >= this.n || size > maxFill(l, f)) return true; try { rehash(l); } catch(OutOfMemoryError cantDoIt) { return false; } return true; } /** Rehashes the map. * *

This method implements the basic rehashing strategy, and may be * overridden by subclasses implementing different rehashing strategies (e.g., * disk-based rehashing). However, you should not override this method * unless you understand the internal workings of this class. * * @param newN the new size */ SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED protected void rehash(final int newN) { final KEY_GENERIC_TYPE key[] = this.key; final VALUE_GENERIC_TYPE value[] = this.value; final int mask = newN - 1; // Note that this is used by the hashing macro final KEY_GENERIC_TYPE newKey[] = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[newN + 1]; final VALUE_GENERIC_TYPE newValue[] = VALUE_GENERIC_ARRAY_CAST new VALUE_TYPE[newN + 1]; #ifdef Linked int i = first, prev = -1, newPrev = -1, t, pos; final long link[] = this.link; final long newLink[] = new long[newN + 1]; first = -1; for(int j = size; j-- != 0;) { if (KEY_EQUALS_NULL(key[i])) pos = newN; else { pos = KEY2INTHASH(key[i]) & mask; while (! KEY_IS_NULL(newKey[pos])) pos = (pos + 1) & mask; } newKey[pos] = key[i]; newValue[pos] = value[i]; if (prev != -1) { SET_NEXT(newLink[newPrev], pos); SET_PREV(newLink[pos], newPrev); newPrev = pos; } else { newPrev = first = pos; // Special case of SET(newLink[pos], -1, -1); newLink[pos] = -1L; } t = i; i = GET_NEXT(link[i]); prev = t; } this.link = newLink; this.last = newPrev; if (newPrev != -1) // Special case of SET_NEXT(newLink[newPrev], -1); newLink[newPrev] |= -1 & 0xFFFFFFFFL; #else int i = n, pos; for(int j = realSize(); j-- != 0;) { while(KEY_IS_NULL(key[--i])); if (! KEY_IS_NULL(newKey[pos = KEY2INTHASH(key[i]) & mask])) while (! KEY_IS_NULL(newKey[pos = (pos + 1) & mask])); newKey[pos] = key[i]; newValue[pos] = value[i]; } newValue[newN] = value[n]; #endif n = newN; this.mask = mask; maxFill = maxFill(n, f); this.key = newKey; this.value = newValue; } /** Returns a deep copy of this map. * *

This method performs a deep copy of this hash map; the data stored in the * map, however, is not cloned. Note that this makes a difference only for object keys. * * @return a deep copy of this map. */ @Override SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED public OPEN_HASH_MAP KEY_VALUE_GENERIC clone() { OPEN_HASH_MAP KEY_VALUE_GENERIC c; try { c = (OPEN_HASH_MAP KEY_VALUE_GENERIC)super.clone(); } catch(CloneNotSupportedException cantHappen) { throw new InternalError(); } c.keys = null; c.values = null; c.entries = null; c.containsNullKey = containsNullKey; c.key = key.clone(); c.value = value.clone(); #ifdef Linked c.link = link.clone(); #endif #ifdef Custom c.strategy = strategy; #endif return c; } /** Returns a hash code for this map. * * This method overrides the generic method provided by the superclass. * Since {@code equals()} is not overriden, it is important * that the value returned by this method is the same value as * the one returned by the overriden method. * * @return a hash code for this map. */ @Override public int hashCode() { int h = 0; for(int j = realSize(), i = 0, t = 0; j-- != 0;) { while(KEY_IS_NULL(key[i])) i++; #if KEYS_REFERENCE if (this != key[i]) #endif t = KEY2JAVAHASH_NOT_NULL(key[i]); #if VALUES_REFERENCE if (this != value[i]) #endif t ^= VALUE2JAVAHASH(value[i]); h += t; i++; } // Zero / null keys have hash zero. if (containsNullKey) h += VALUE2JAVAHASH(value[n]); return h; } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { final KEY_GENERIC_TYPE key[] = this.key; final VALUE_GENERIC_TYPE value[] = this.value; final EntryIterator i = new EntryIterator(); s.defaultWriteObject(); for(int j = size, e; j-- != 0;) { e = i.nextEntry(); s.WRITE_KEY(key[e]); s.WRITE_VALUE(value[e]); } } SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); n = arraySize(size, f); maxFill = maxFill(n, f); mask = n - 1; final KEY_GENERIC_TYPE key[] = this.key = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[n + 1]; final VALUE_GENERIC_TYPE value[] = this.value = VALUE_GENERIC_ARRAY_CAST new VALUE_TYPE[n + 1]; #ifdef Linked final long link[] = this.link = new long[n + 1]; int prev = -1; first = last = -1; #endif KEY_GENERIC_TYPE k; VALUE_GENERIC_TYPE v; for(int i = size, pos; i-- != 0;) { k = KEY_GENERIC_CAST s.READ_KEY(); v = VALUE_GENERIC_CAST s.READ_VALUE(); if (KEY_EQUALS_NULL(k)) { pos = n; containsNullKey = true; } else { pos = KEY2INTHASH(k) & mask; while (! KEY_IS_NULL(key[pos])) pos = (pos + 1) & mask; } key[pos] = k; value[pos] = v; #ifdef Linked if (first != -1) { SET_NEXT(link[prev], pos); SET_PREV(link[pos], prev); prev = pos; } else { prev = first = pos; // Special case of SET_PREV(newLink[pos], -1); link[pos] |= (-1L & 0xFFFFFFFFL) << 32; } #endif } #ifdef Linked last = prev; if (prev != -1) // Special case of SET_NEXT(link[prev], -1); link[prev] |= -1 & 0xFFFFFFFFL; #endif if (ASSERTS) checkTable(); } #ifdef ASSERTS_CODE private void checkTable() { assert (n & -n) == n : "Table length is not a power of two: " + n; assert n == key.length - 1; int n = key.length - 1; while(n-- != 0) if (! KEY_IS_NULL(key[n]) && ! containsKey(key[n])) throw new AssertionError("Hash table has key " + key[n] + " marked as occupied, but the key does not belong to the table"); #if KEYS_PRIMITIVE java.util.HashSet s = new java.util.HashSet (); #else java.util.HashSet s = new java.util.HashSet(); #endif for(int i = key.length; i-- != 0;) if (! KEY_IS_NULL(key[i]) && ! s.add(key[i])) throw new AssertionError("Key " + key[i] + " appears twice at position " + i); #ifdef Linked KEY_BIDI_ITERATOR KEY_GENERIC i = keySet().iterator(); KEY_GENERIC_TYPE k; n = size(); while(n-- != 0) if (! containsKey(k = i.NEXT_KEY())) throw new AssertionError("Linked hash table forward enumerates key " + k + ", but the key does not belong to the table"); if (i.hasNext()) throw new AssertionError("Forward iterator not exhausted"); n = size(); if (n > 0) { i = keySet().iterator(LAST_KEY()); while(n-- != 0) if (! containsKey(k = i.PREV_KEY())) throw new AssertionError("Linked hash table backward enumerates key " + k + ", but the key does not belong to the table"); if (i.hasPrevious()) throw new AssertionError("Previous iterator not exhausted"); } #endif } #else private void checkTable() {} #endif #ifdef TEST private static long seed = System.currentTimeMillis(); private static java.util.Random r = new java.util.Random(seed); private static KEY_TYPE genKey() { #if KEY_CLASS_Byte || KEY_CLASS_Short || KEY_CLASS_Character return (KEY_TYPE)(r.nextInt()); #elif KEYS_PRIMITIVE return r.NEXT_KEY(); #elif !KEYS_USE_REFERENCE_EQUALITY #ifdef Custom int i = r.nextInt(3); byte a[] = new byte[i]; while(i-- != 0) a[i] = (byte)r.nextInt(); return a; #else return Integer.toBinaryString(r.nextInt()); #endif #else return new java.io.Serializable() {}; #endif } private static VALUE_TYPE genValue() { #if VALUE_CLASS_Byte || VALUE_CLASS_Short || VALUE_CLASS_Character return (VALUE_TYPE)(r.nextInt()); #elif VALUES_PRIMITIVE return r.NEXT_VALUE(); #elif !VALUES_USE_REFERENCE_EQUALITY return Integer.toBinaryString(r.nextInt()); #else return new java.io.Serializable() {}; #endif } private static final class ArrayComparator implements java.util.Comparator { public int compare(Object a, Object b) { byte[] aa = (byte[])a; byte[] bb = (byte[])b; int length = Math.min(aa.length, bb.length); for(int i = 0; i < length; i++) { if (aa[i] < bb[i]) return -1; if (aa[i] > bb[i]) return 1; } return aa.length == bb.length ? 0 : (aa.length < bb.length ? -1 : 1); } } private static final class MockMap extends java.util.TreeMap { private java.util.List list = new java.util.ArrayList(); public MockMap(java.util.Comparator c) { super(c); } public Object put(Object k, Object v) { if (! containsKey(k)) list.add(k); return super.put(k, v); } public void putAll(Map m) { java.util.Iterator i = m.entrySet().iterator(); while(i.hasNext()) { Map.Entry e = (Map.Entry)i.next(); put(e.getKey(), e.getValue()); } } public Object remove(Object k) { if (containsKey(k)) { int i = list.size(); while(i-- != 0) if (comparator().compare(list.get(i), k) == 0) { list.remove(i); break; } } return super.remove(k); } private void justRemove(Object k) { super.remove(k); } private java.util.Set justEntrySet() { return super.entrySet(); } private java.util.Set justKeySet() { return super.keySet(); } public java.util.Set keySet() { return new java.util.AbstractSet() { final java.util.Set keySet = justKeySet(); public boolean contains(Object k) { return keySet.contains(k); } public int size() { return keySet.size(); } public java.util.Iterator iterator() { return new java.util.Iterator() { final java.util.Iterator iterator = list.iterator(); Object curr; public Object next() { return curr = iterator.next(); } public boolean hasNext() { return iterator.hasNext(); } public void remove() { justRemove(curr); iterator.remove(); } }; } }; } public java.util.Set entrySet() { return new java.util.AbstractSet() { final java.util.Set entrySet = justEntrySet(); public boolean contains(Object k) { return entrySet.contains(k); } public int size() { return entrySet.size(); } public java.util.Iterator iterator() { return new java.util.Iterator() { final java.util.Iterator iterator = list.iterator(); Object curr; public Object next() { curr = iterator.next(); #if VALUES_USE_REFERENCE_EQUALITY #if KEYS_USE_REFERENCE_EQUALITY return new ABSTRACT_MAP.BasicEntry((Object)curr, (Object)get(curr)) { #else return new ABSTRACT_MAP.BasicEntry((KEY_CLASS)curr, (Object)get(curr)) { #endif #else #if KEYS_USE_REFERENCE_EQUALITY return new ABSTRACT_MAP.BasicEntry((Object)curr, (VALUE_CLASS)get(curr)) { #else return new ABSTRACT_MAP.BasicEntry((KEY_CLASS)curr, (VALUE_CLASS)get(curr)) { #endif #endif public VALUE_TYPE setValue(VALUE_TYPE v) { return VALUE_OBJ2TYPE(put(getKey(), VALUE2OBJ(v))); } }; } public boolean hasNext() { return iterator.hasNext(); } public void remove() { justRemove(((Map.Entry)curr).getKey()); iterator.remove(); } }; } }; } } private static java.text.NumberFormat format = new java.text.DecimalFormat("#,###.00"); private static java.text.FieldPosition fp = new java.text.FieldPosition(0); private static String format(double d) { StringBuffer s = new StringBuffer(); return format.format(d, s, fp).toString(); } private static void speedTest(int n, float f, boolean comp) { #ifndef Custom int i, j; OPEN_HASH_MAP m; #ifdef Linked java.util.LinkedHashMap t; #else java.util.HashMap t; #endif KEY_TYPE k[] = new KEY_TYPE[n]; KEY_TYPE nk[] = new KEY_TYPE[n]; VALUE_TYPE v[] = new VALUE_TYPE[n]; long ns; for(i = 0; i < n; i++) { k[i] = genKey(); nk[i] = genKey(); v[i] = genValue(); } double totPut = 0, totYes = 0, totNo = 0, totIter = 0, totRemYes = 0, totRemNo = 0, d; if (comp) { for(j = 0; j < 20; j++) { #ifdef Linked t = new java.util.LinkedHashMap(16); #else t = new java.util.HashMap(16); #endif /* We put pairs to t. */ ns = System.nanoTime(); for(i = 0; i < n; i++) t.put(KEY2OBJ(k[i]), VALUE2OBJ(v[i])); d = (System.nanoTime() - ns) / (double)n; if (j > 2) totPut += d; System.out.print("Put: " + format(d) + "ns "); /* We check for pairs in t. */ ns = System.nanoTime(); for(i = 0; i < n; i++) t.containsKey(KEY2OBJ(k[i])); d = (System.nanoTime() - ns) / (double)n; if (j > 2) totYes += d; System.out.print("Yes: " + format(d) + "ns "); /* We check for pairs not in t. */ ns = System.nanoTime(); for(i = 0; i < n; i++) t.containsKey(KEY2OBJ(nk[i])); d = (System.nanoTime() - ns) / (double)n; if (j > 2) totNo += d; System.out.print("No: " + format(d) + "ns "); /* We iterate on t. */ ns = System.nanoTime(); for(java.util.Iterator it = t.entrySet().iterator(); it.hasNext(); it.next()); d = (System.nanoTime() - ns) / (double)n; if (j > 2) totIter += d; System.out.print("Iter: " + format(d) + "ns "); /* We delete pairs not in t. */ ns = System.nanoTime(); for(i = 0; i < n; i++) t.remove(KEY2OBJ(nk[i])); d = (System.nanoTime() - ns) / (double)n; if (j > 2) totRemNo += d; System.out.print("RemNo: " + format(d) + "ns "); /* We delete pairs in t. */ ns = System.nanoTime(); for(i = 0; i < n; i++) t.remove(KEY2OBJ(k[i])); d = (System.nanoTime() - ns) / (double)n; if (j > 2) totRemYes += d; System.out.print("RemYes: " + format(d) + "ns "); System.out.println(); } System.out.println(); System.out.println("java.util Put: " + format(totPut/(j-3)) + "ns Yes: " + format(totYes/(j-3)) + "ns No: " + format(totNo/(j-3)) + "ns Iter: " + format(totIter/(j-3)) + "ns RemNo: " + format(totRemNo/(j-3)) + "ns RemYes: " + format(totRemYes/(j-3)) + "K/s"); System.out.println(); totPut = totYes = totNo = totIter = totRemYes = totRemNo = 0; } for(j = 0; j < 20; j++) { m = new OPEN_HASH_MAP(16, f); /* We put pairs to m. */ ns = System.nanoTime(); for(i = 0; i < n; i++) m.put(k[i], v[i]); d = (System.nanoTime() - ns) / (double)n; if (j > 2) totPut += d; System.out.print("Put: " + format(d) + "ns "); /* We check for pairs in m. */ ns = System.nanoTime(); for(i = 0; i < n; i++) m.containsKey(k[i]); d = (System.nanoTime() - ns) / (double)n; if (j > 2) totYes += d; System.out.print("Yes: " + format(d) + "ns "); /* We check for pairs not in m. */ ns = System.nanoTime(); for(i = 0; i < n; i++) m.containsKey(nk[i]); d = (System.nanoTime() - ns) / (double)n; if (j > 2) totNo += d; System.out.print("No: " + format(d) + "ns "); /* We iterate on m. */ ns = System.nanoTime(); for(java.util.Iterator it = m.entrySet().iterator(); it.hasNext(); it.next()); d = (System.nanoTime() - ns) / (double)n; if (j > 2) totIter += d; System.out.print("Iter: " + format(d) + "ns "); /* We delete pairs not in m. */ ns = System.nanoTime(); for(i = 0; i < n; i++) m.remove(nk[i]); d = (System.nanoTime() - ns) / (double)n; if (j > 2) totRemNo += d; System.out.print("RemNo: " + format(d) + "ns "); /* We delete pairs in m. */ ns = System.nanoTime(); for(i = 0; i < n; i++) m.remove(k[i]); d = (System.nanoTime() - ns) / (double)n; if (j > 2) totRemYes += d; System.out.print("RemYes: " + format(d) + "ns "); System.out.println(); } System.out.println(); System.out.println("fastutil Put: " + format(totPut/(j-3)) + "ns Yes: " + format(totYes/(j-3)) + "ns No: " + format(totNo/(j-3)) + "ns Iter: " + format(totIter/(j-3)) + "ns RemNo: " + format(totRemNo/(j-3)) + "ns RemYes: " + format(totRemYes/(j-3)) + "ns"); System.out.println(); #endif } private static void fatal(String msg) { throw new AssertionError(msg); } private static void ensure(boolean cond, String msg) { if (cond) return; fatal(msg); } protected static void runTest(int n, float f) throws Exception { #if !defined(Custom) || KEYS_REFERENCE #ifdef Custom OPEN_HASH_MAP m = new OPEN_HASH_MAP(Hash.DEFAULT_INITIAL_SIZE, f, it.unimi.dsi.fastutil.bytes.ByteArrays.HASH_STRATEGY); #else OPEN_HASH_MAP m = new OPEN_HASH_MAP(Hash.DEFAULT_INITIAL_SIZE, f); #endif #ifdef Linked #ifdef Custom Map t = new MockMap(new ArrayComparator()); #else Map t = new java.util.LinkedHashMap(); #endif #else #ifdef Custom Map t = new java.util.TreeMap(new ArrayComparator()); #else Map t = new java.util.HashMap(); #endif #endif /* First of all, we fill t with random data. */ for(int i=0; i 0) { java.util.ListIterator i, j; Object J; j = new java.util.LinkedList(t.keySet()).listIterator(); int e = r.nextInt(t.size()); Object from; do from = j.next(); while(e-- != 0); i = (java.util.ListIterator)((SORTED_SET)m.keySet()).iterator(KEY_OBJ2TYPE(from)); for(int k = 0; k < 2*n; k++) { ensure(i.hasNext() == j.hasNext(), "Error (" + seed + "): divergence in hasNext() (iterator with starting point " + from + ")"); ensure(i.hasPrevious() == j.hasPrevious(), "Error (" + seed + "): divergence in hasPrevious() (iterator with starting point " + from + ")"); if (r.nextFloat() < .8 && i.hasNext()) { #ifdef Custom ensure(m.strategy().equals(i.next(), J = j.next()), "Error (" + seed + "): divergence in next() (iterator with starting point " + from + ")"); #else ensure(i.next().equals(J = j.next()), "Error (" + seed + "): divergence in next() (iterator with starting point " + from + ")"); #endif if (r.nextFloat() < 0.5) { i.remove(); j.remove(); t.remove(J); } } else if (r.nextFloat() < .2 && i.hasPrevious()) { #ifdef Custom ensure(m.strategy().equals(i.previous(), J = j.previous()), "Error (" + seed + "): divergence in previous() (iterator with starting point " + from + ")"); #else ensure(i.previous().equals(J = j.previous()), "Error (" + seed + "): divergence in previous() (iterator with starting point " + from + ")"); #endif if (r.nextFloat() < 0.5) { i.remove(); j.remove(); t.remove(J); } } ensure(i.nextIndex() == j.nextIndex(), "Error (" + seed + "): divergence in nextIndex() (iterator with starting point " + from + ")"); ensure(i.previousIndex() == j.previousIndex(), "Error (" + seed + "): divergence in previousIndex() (iterator with starting point " + from + ")"); } } /* Now we check that m actually holds that data. */ ensure(m.equals(t), "Error (" + seed + "): ! m.equals(t) after iteration"); ensure(t.equals(m), "Error (" + seed + "): ! t.equals(m) after iteration"); #endif /* Now we take out of m everything, and check that it is empty. */ for(java.util.Iterator i=t.keySet().iterator(); i.hasNext();) m.remove(i.next()); ensure(m.isEmpty(), "Error (" + seed + "): m is not empty (as it should be)"); #ifdef NumericEnhancements #if VALUE_CLASS_Byte || VALUE_CLASS_Character || VALUE_CLASS_Short || VALUE_CLASS_Integer || VALUE_CLASS_Long /* Now we check that increment works properly, using random data */ { t.clear(); m.clear(); for(int k = 0; k < 2*n; k++) { KEY_TYPE T = genKey(); VALUE_TYPE U = genValue(); VALUE_TYPE rU = m.increment(T, U); VALUE_GENERIC_CLASS tU = (VALUE_GENERIC_CLASS) t.get(KEY2OBJ(T)); if (null == tU) { ensure(m.defaultReturnValue() == rU, "Error (" + seed + "): map increment does not return proper starting value."); t.put(KEY2OBJ(T), VALUE2OBJ((VALUE_TYPE) (m.defaultReturnValue() + U))); } else { t.put(KEY2OBJ(T), VALUE2OBJ((VALUE_TYPE) (((VALUE_TYPE) tU) + U))); } } // Maps should contain identical values ensure(new java.util.HashMap(m).equals(new java.util.HashMap(t)), "Error(" + seed + "): incremented maps are not equal."); } #endif #endif #if (KEY_CLASS_Integer || KEY_CLASS_Long) && (VALUE_CLASS_Integer || VALUE_CLASS_Long) m = new OPEN_HASH_MAP(n, f); t.clear(); int x; /* Now we torture-test the hash table. This part is implemented only for integers and longs. */ int p = m.key.length; for(int i=0; i2) f = Float.parseFloat(args[2]); if (args.length > 3) r = new java.util.Random(seed = Long.parseLong(args[3])); try { if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest(n, f, "speedComp".equals(args[0])); else if ("test".equals(args[0])) runTest(n, f); } catch(Throwable e) { e.printStackTrace(System.err); System.err.println("seed: " + seed); throw e; } } #endif }