All Downloads are FREE. Search and download functionalities are using the official Maven repository.

drv.LinkedOpenHashSet.drv Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists, and queues with a small memory footprint and fast operations; it provides also big (64-bit) arrays, sets, and lists, sorting algorithms, fast, practical I/O classes for binary and text files, and facilities for memory mapping large files. This jar (fastutil-core.jar) contains data structures based on integers, longs, doubles, and objects, only; fastutil.jar contains all classes. If you have both jars in your dependencies, this jar should be excluded.

There is a newer version: 8.5.14
Show newest version
/*
 * Copyright (C) 2002-2023 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


package PACKAGE;

import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;

import java.util.Arrays;
import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;
#if KEYS_REFERENCE
import java.util.function.Consumer;
#ifndef Custom
import java.util.stream.Collector;
#endif
#endif

#ifdef Linked

#if KEYS_REFERENCE
import java.util.Comparator;
#endif

/**  A type-specific linked hash set with with a fast, small-footprint implementation.
 *
 * 

Instances of this class use a hash table to represent a set. The table is * filled up to a specified load factor, and then doubled in size to * accommodate new entries. If the table is emptied below one fourth * of the load factor, it is halved in size; however, the table is never reduced to a * size smaller than that at creation time: this approach makes it * possible to create sets with a large capacity in which insertions and * deletions do not cause immediately rehashing. Moreover, halving is * not performed when deleting entries from an iterator, as it would interfere * with the iteration process. * *

Note that {@link #clear()} does not modify the hash table size. * Rather, a family of {@linkplain #trim() trimming * methods} lets you control the size of the table; this is particularly useful * if you reuse instances of this class. * *

Iterators generated by this set will enumerate elements in the same order in which they * have been added to the set (addition of elements already present * in the set does not change the iteration order). Note that this order has nothing in common with the natural * order of the keys. The order is kept by means of a doubly linked list, represented * via an array of longs parallel to the table. * *

This class implements the interface of a sorted set, so to allow easy * access of the iteration order: for instance, you can get the first element * in iteration order with {@code first()} without having to create an * iterator; however, this class partially violates the {@link java.util.SortedSet} * contract because all subset methods throw an exception and {@link * #comparator()} returns always {@code null}. * *

Additional methods, such as {@code addAndMoveToFirst()}, make it easy * to use instances of this class as a cache (e.g., with LRU policy). * *

The iterators provided by this class are type-specific {@linkplain * java.util.ListIterator list iterators}, and can be started at any * element which is in the set (if the provided element * is not in the set, a {@link NoSuchElementException} exception will be thrown). * If, however, the provided element is not the first or last element in the * set, the first access to the list index will require linear time, as in the worst case * the entire set must be scanned in iteration order to retrieve the positional * index of the starting element. If you use just the methods of a type-specific {@link it.unimi.dsi.fastutil.BidirectionalIterator}, * however, all operations will be performed in constant time. * * @see Hash * @see HashCommon */ public class OPEN_HASH_SET KEY_GENERIC extends ABSTRACT_SORTED_SET KEY_GENERIC implements java.io.Serializable, Cloneable, Hash { #else #ifdef Custom /** A type-specific hash set with a fast, small-footprint implementation whose {@linkplain it.unimi.dsi.fastutil.Hash.Strategy hashing strategy} * is specified at creation time. * *

Instances of this class use a hash table to represent a set. The table is * filled up to a specified load factor, and then doubled in size to * accommodate new entries. If the table is emptied below one fourth * of the load factor, it is halved in size; however, the table is never reduced to a * size smaller than that at creation time: this approach makes it * possible to create sets with a large capacity in which insertions and * deletions do not cause immediately rehashing. Moreover, halving is * not performed when deleting entries from an iterator, as it would interfere * with the iteration process. * *

Note that {@link #clear()} does not modify the hash table size. * Rather, a family of {@linkplain #trim() trimming * methods} lets you control the size of the table; this is particularly useful * if you reuse instances of this class. * * @see Hash * @see HashCommon */ public class OPEN_HASH_SET KEY_GENERIC extends ABSTRACT_SET KEY_GENERIC implements java.io.Serializable, Cloneable, Hash { #else /** A type-specific hash set with with a fast, small-footprint implementation. * *

Instances of this class use a hash table to represent a set. The table is * filled up to a specified load factor, and then doubled in size to * accommodate new entries. If the table is emptied below one fourth * of the load factor, it is halved in size; however, the table is never reduced to a * size smaller than that at creation time: this approach makes it * possible to create sets with a large capacity in which insertions and * deletions do not cause immediately rehashing. Moreover, halving is * not performed when deleting entries from an iterator, as it would interfere * with the iteration process. * *

Note that {@link #clear()} does not modify the hash table size. * Rather, a family of {@linkplain #trim() trimming * methods} lets you control the size of the table; this is particularly useful * if you reuse instances of this class. * * @see Hash * @see HashCommon */ public class OPEN_HASH_SET KEY_GENERIC extends ABSTRACT_SET KEY_GENERIC implements java.io.Serializable, Cloneable, Hash { #endif #endif private static final long serialVersionUID = 0L; private static final boolean ASSERTS = ASSERTS_VALUE; /** The array of keys. */ protected transient KEY_GENERIC_TYPE[] key; /** The mask for wrapping a position counter. */ protected transient int mask; /** Whether this set contains the null key. */ protected transient boolean containsNull; #ifdef Custom /** The hash strategy of this custom set. */ protected STRATEGY KEY_SUPER_GENERIC strategy; #endif #ifdef Linked /** The index of the first entry in iteration order. It is valid iff {@link #size} is nonzero; otherwise, it contains -1. */ protected transient int first = -1; /** The index of the last entry in iteration order. It is valid iff {@link #size} is nonzero; otherwise, it contains -1. */ protected transient int last = -1; /** For each entry, the next and the previous entry in iteration order, * stored as {@code ((prev & 0xFFFFFFFFL) << 32) | (next & 0xFFFFFFFFL)}. * The first entry contains predecessor -1, and the last entry * contains successor -1. */ protected transient long[] link; #endif /** The current table size. Note that an additional element is allocated for storing the null key. */ protected transient int n; /** Threshold after which we rehash. It must be the table size times {@link #f}. */ protected transient int maxFill; /** We never resize below this threshold, which is the construction-time {#n}. */ protected final transient int minN; /** Number of entries in the set (including the null key, if present). */ protected int size; /** The acceptable load factor. */ protected final float f; #ifdef Custom /** Creates a new hash set. * *

The actual table size will be the least power of two greater than {@code expected}/{@code f}. * * @param expected the expected number of elements in the hash set. * @param f the load factor. * @param strategy the strategy. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public OPEN_HASH_SET(final int expected, final float f, final STRATEGY KEY_SUPER_GENERIC strategy) { this.strategy = strategy; #else /** Creates a new hash set. * *

The actual table size will be the least power of two greater than {@code expected}/{@code f}. * * @param expected the expected number of elements in the hash set. * @param f the load factor. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public OPEN_HASH_SET(final int expected, final float f) { #endif if (f <= 0 || f >= 1) throw new IllegalArgumentException("Load factor must be greater than 0 and smaller than 1"); if (expected < 0) throw new IllegalArgumentException("The expected number of elements must be nonnegative"); this.f = f; minN = n = arraySize(expected, f); mask = n - 1; maxFill = maxFill(n, f); key = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[n + 1]; #ifdef Linked link = new long[n + 1]; #endif } #ifdef Custom /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * * @param expected the expected number of elements in the hash set. * @param strategy the strategy. */ public OPEN_HASH_SET(final int expected, final STRATEGY KEY_SUPER_GENERIC strategy) { this(expected, DEFAULT_LOAD_FACTOR, strategy); } #else /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * * @param expected the expected number of elements in the hash set. */ public OPEN_HASH_SET(final int expected) { this(expected, DEFAULT_LOAD_FACTOR); } #endif #ifdef Custom /** Creates a new hash set with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} elements * and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * @param strategy the strategy. */ public OPEN_HASH_SET(final STRATEGY KEY_SUPER_GENERIC strategy) { this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR, strategy); } #else /** Creates a new hash set with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} elements * and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. */ public OPEN_HASH_SET() { this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR); } #endif #ifdef Custom /** Creates a new hash set copying a given collection. * * @param c a {@link Collection} to be copied into the new hash set. * @param f the load factor. * @param strategy the strategy. */ public OPEN_HASH_SET(final Collection c, final float f, final STRATEGY KEY_SUPER_GENERIC strategy) { this(c.size(), f, strategy); addAll(c); } #else /** Creates a new hash set copying a given collection. * * @param c a {@link Collection} to be copied into the new hash set. * @param f the load factor. */ public OPEN_HASH_SET(final Collection c, final float f) { this(c.size(), f); addAll(c); } #endif #ifdef Custom /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying a given collection. * * @param c a {@link Collection} to be copied into the new hash set. * @param strategy the strategy. */ public OPEN_HASH_SET(final Collection c, final STRATEGY KEY_SUPER_GENERIC strategy) { this(c, DEFAULT_LOAD_FACTOR, strategy); } #else /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying a given collection. * * @param c a {@link Collection} to be copied into the new hash set. */ public OPEN_HASH_SET(final Collection c) { this(c, DEFAULT_LOAD_FACTOR); } #endif #ifdef Custom /** Creates a new hash set copying a given type-specific collection. * * @param c a type-specific collection to be copied into the new hash set. * @param f the load factor. * @param strategy the strategy. */ public OPEN_HASH_SET(final COLLECTION KEY_EXTENDS_GENERIC c, final float f, STRATEGY KEY_SUPER_GENERIC strategy) { this(c.size(), f, strategy); addAll(c); } #else /** Creates a new hash set copying a given type-specific collection. * * @param c a type-specific collection to be copied into the new hash set. * @param f the load factor. */ public OPEN_HASH_SET(final COLLECTION KEY_EXTENDS_GENERIC c, final float f) { this(c.size(), f); addAll(c); } #endif #ifdef Custom /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying a given type-specific collection. * * @param c a type-specific collection to be copied into the new hash set. * @param strategy the strategy. */ public OPEN_HASH_SET(final COLLECTION KEY_EXTENDS_GENERIC c, final STRATEGY KEY_SUPER_GENERIC strategy) { this(c, DEFAULT_LOAD_FACTOR, strategy); } #else /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying a given type-specific collection. * * @param c a type-specific collection to be copied into the new hash set. */ public OPEN_HASH_SET(final COLLECTION KEY_EXTENDS_GENERIC c) { this(c, DEFAULT_LOAD_FACTOR); } #endif #ifdef Custom /** Creates a new hash set using elements provided by a type-specific iterator. * * @param i a type-specific iterator whose elements will fill the set. * @param f the load factor. * @param strategy the strategy. */ public OPEN_HASH_SET(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, final float f, final STRATEGY KEY_SUPER_GENERIC strategy) { this(DEFAULT_INITIAL_SIZE, f, strategy); while(i.hasNext()) add(i.NEXT_KEY()); } #else /** Creates a new hash set using elements provided by a type-specific iterator. * * @param i a type-specific iterator whose elements will fill the set. * @param f the load factor. */ public OPEN_HASH_SET(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, final float f) { this(DEFAULT_INITIAL_SIZE, f); while(i.hasNext()) add(i.NEXT_KEY()); } #endif #ifdef Custom /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by a type-specific iterator. * * @param i a type-specific iterator whose elements will fill the set. * @param strategy the strategy. */ public OPEN_HASH_SET(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, final STRATEGY KEY_SUPER_GENERIC strategy) { this(i, DEFAULT_LOAD_FACTOR, strategy); } #else /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by a type-specific iterator. * * @param i a type-specific iterator whose elements will fill the set. */ public OPEN_HASH_SET(final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i) { this(i, DEFAULT_LOAD_FACTOR); } #endif #if KEYS_PRIMITIVE #ifdef Custom /** Creates a new hash set using elements provided by an iterator. * * @param i an iterator whose elements will fill the set. * @param f the load factor. * @param strategy the strategy. */ public OPEN_HASH_SET(final Iterator i, final float f, final STRATEGY KEY_SUPER_GENERIC strategy) { this(ITERATORS.AS_KEY_ITERATOR(i), f, strategy); } #else /** Creates a new hash set using elements provided by an iterator. * * @param i an iterator whose elements will fill the set. * @param f the load factor. */ public OPEN_HASH_SET(final Iterator i, final float f) { this(ITERATORS.AS_KEY_ITERATOR(i), f); } #endif #ifdef Custom /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by an iterator. * * @param i an iterator whose elements will fill the set. * @param strategy the strategy. */ public OPEN_HASH_SET(final Iterator i, final STRATEGY KEY_SUPER_GENERIC strategy) { this(ITERATORS.AS_KEY_ITERATOR(i), strategy); } #else /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by an iterator. * * @param i an iterator whose elements will fill the set. */ public OPEN_HASH_SET(final Iterator i) { this(ITERATORS.AS_KEY_ITERATOR(i)); } #endif #endif #ifdef Custom /** Creates a new hash set and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the set. * @param offset the first element to use. * @param length the number of elements to use. * @param f the load factor. * @param strategy the strategy. */ public OPEN_HASH_SET(final KEY_GENERIC_TYPE[] a, final int offset, final int length, final float f, final STRATEGY KEY_SUPER_GENERIC strategy) { this(length < 0 ? 0 : length, f, strategy); ARRAYS.ensureOffsetLength(a, offset, length); for(int i = 0; i < length; i++) add(a[offset + i]); } #else /** Creates a new hash set and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the set. * @param offset the first element to use. * @param length the number of elements to use. * @param f the load factor. */ public OPEN_HASH_SET(final KEY_GENERIC_TYPE[] a, final int offset, final int length, final float f) { this(length < 0 ? 0 : length, f); ARRAYS.ensureOffsetLength(a, offset, length); for(int i = 0; i < length; i++) add(a[offset + i]); } #endif #ifdef Custom /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the set. * @param offset the first element to use. * @param length the number of elements to use. * @param strategy the strategy. */ public OPEN_HASH_SET(final KEY_GENERIC_TYPE[] a, final int offset, final int length, final STRATEGY KEY_SUPER_GENERIC strategy) { this(a, offset, length, DEFAULT_LOAD_FACTOR, strategy); } #else /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the set. * @param offset the first element to use. * @param length the number of elements to use. */ public OPEN_HASH_SET(final KEY_GENERIC_TYPE[] a, final int offset, final int length) { this(a, offset, length, DEFAULT_LOAD_FACTOR); } #endif #ifdef Custom /** Creates a new hash set copying the elements of an array. * * @param a an array to be copied into the new hash set. * @param f the load factor. * @param strategy the strategy. */ public OPEN_HASH_SET(final KEY_GENERIC_TYPE[] a, final float f, final STRATEGY KEY_SUPER_GENERIC strategy) { this(a, 0, a.length, f, strategy); } #else /** Creates a new hash set copying the elements of an array. * * @param a an array to be copied into the new hash set. * @param f the load factor. */ public OPEN_HASH_SET(final KEY_GENERIC_TYPE[] a, final float f) { this(a, 0, a.length, f); } #endif #ifdef Custom /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying the elements of an array. * * @param a an array to be copied into the new hash set. * @param strategy the strategy. */ public OPEN_HASH_SET(final KEY_GENERIC_TYPE[] a, final STRATEGY KEY_SUPER_GENERIC strategy) { this(a, DEFAULT_LOAD_FACTOR, strategy); } #else /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying the elements of an array. * * @param a an array to be copied into the new hash set. */ public OPEN_HASH_SET(final KEY_GENERIC_TYPE[] a) { this(a, DEFAULT_LOAD_FACTOR); } /** Creates a new empty hash set. * * @return a new empty hash set. */ public static KEY_GENERIC OPEN_HASH_SET KEY_GENERIC of() { return new OPEN_HASH_SET KEY_GENERIC_DIAMOND(); } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * using the given element. * * @param e the element that the returned set will contain. * @return a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor containing {@code e}. */ public static KEY_GENERIC OPEN_HASH_SET KEY_GENERIC of(final KEY_GENERIC_TYPE e) { OPEN_HASH_SET KEY_GENERIC result = new OPEN_HASH_SET KEY_GENERIC_DIAMOND(1, DEFAULT_LOAD_FACTOR); result.add(e); return result; } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * using the elements given. * * @param e0 the first element. * @param e1 the second element. * @return a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor containing {@code e0} and {@code e1}. * @throws IllegalArgumentException if there were duplicate entries. */ public static KEY_GENERIC OPEN_HASH_SET KEY_GENERIC of(final KEY_GENERIC_TYPE e0, final KEY_GENERIC_TYPE e1) { OPEN_HASH_SET KEY_GENERIC result = new OPEN_HASH_SET KEY_GENERIC_DIAMOND(2, DEFAULT_LOAD_FACTOR); result.add(e0); if (!result.add(e1)) { throw new IllegalArgumentException("Duplicate element: " + e1); } return result; } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * using the elements given. * * @param e0 the first element. * @param e1 the second element. * @param e2 the third element. * @return a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor containing {@code e0}, {@code e1}, and {@code e2}. * @throws IllegalArgumentException if there were duplicate entries. */ public static KEY_GENERIC OPEN_HASH_SET KEY_GENERIC of(final KEY_GENERIC_TYPE e0, final KEY_GENERIC_TYPE e1, final KEY_GENERIC_TYPE e2) { OPEN_HASH_SET KEY_GENERIC result = new OPEN_HASH_SET KEY_GENERIC_DIAMOND(3, DEFAULT_LOAD_FACTOR); result.add(e0); if (!result.add(e1)) { throw new IllegalArgumentException("Duplicate element: " + e1); } if (!result.add(e2)) { throw new IllegalArgumentException("Duplicate element: " + e2); } return result; } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * using a list of elements. * * @param a a list of elements that will be used to initialize the new hash set. * @return a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor containing the elements of {@code a}. * @throws IllegalArgumentException if a duplicate entry was encountered. */ SAFE_VARARGS public static KEY_GENERIC OPEN_HASH_SET KEY_GENERIC of(final KEY_GENERIC_TYPE... a) { OPEN_HASH_SET KEY_GENERIC result = new OPEN_HASH_SET KEY_GENERIC_DIAMOND(a.length, DEFAULT_LOAD_FACTOR); for (KEY_GENERIC_TYPE element : a) { if (!result.add(element)) { throw new IllegalArgumentException("Duplicate element " + element); } } return result; } #endif #ifndef Custom #if KEYS_INT_LONG_DOUBLE /** Collects the result of a primitive {@code Stream} into a new hash set. * *

This method performs a terminal operation on the given {@code Stream} * * @apiNote Taking a primitive stream instead of returning something like a * {@link java.util.stream.Collector Collector} is necessary because there is no * primitive {@code Collector} equivalent in the Java API. */ public static KEY_GENERIC OPEN_HASH_SET KEY_GENERIC toSet(JDK_PRIMITIVE_STREAM stream) { return stream.collect( OPEN_HASH_SET::new, OPEN_HASH_SET::add, OPEN_HASH_SET::addAll); } /** Collects the result of a primitive {@code Stream} into a new hash set, potentially pre-allocated to handle the given size. * *

This method performs a terminal operation on the given {@code Stream} * * @apiNote Taking a primitive stream instead returning something like a * {@link java.util.stream.Collector Collector} is necessary because there is no * primitive {@code Collector} equivalent in the Java API. */ public static KEY_GENERIC OPEN_HASH_SET KEY_GENERIC toSetWithExpectedSize(JDK_PRIMITIVE_STREAM stream, int expectedSize) { if (expectedSize <= Hash.DEFAULT_INITIAL_SIZE) { // Already below default capacity. Just use all default construction instead of fiddling with atomics in SizeDecreasingSupplier return toSet(stream); } return stream.collect( new COLLECTIONS.SizeDecreasingSupplier< #if KEYS_REFERENCE K, #endif OPEN_HASH_SET KEY_GENERIC>( expectedSize, (int size) -> size <= Hash.DEFAULT_INITIAL_SIZE ? new OPEN_HASH_SET KEY_GENERIC() : new OPEN_HASH_SET KEY_GENERIC(size)), OPEN_HASH_SET::add, OPEN_HASH_SET::addAll); } #elif KEYS_REFERENCE // Collector wants a function that returns the collection being added to. private OPEN_HASH_SET KEY_GENERIC combine(OPEN_HASH_SET KEY_EXTENDS_GENERIC toAddFrom) { addAll(toAddFrom); return this; } private static final Collector> TO_SET_COLLECTOR = Collector.of( OPEN_HASH_SET::new, OPEN_HASH_SET::add, OPEN_HASH_SET::combine #ifndef Linked , Collector.Characteristics.UNORDERED #endif ); /** Returns a {@link Collector} that collects a {@code Stream}'s elements into a new hash set. */ SUPPRESS_WARNINGS_KEY_UNCHECKED_RAWTYPES public static KEY_GENERIC Collector toSet() { return (Collector) TO_SET_COLLECTOR; } /** Returns a {@link Collector} that collects a {@code Stream}'s elements into a new hash set, potentially pre-allocated to handle the given size. */ public static KEY_GENERIC Collector toSetWithExpectedSize(int expectedSize) { if (expectedSize <= Hash.DEFAULT_INITIAL_SIZE) { // Already below default capacity. Just use all default construction instead of fiddling with atomics in SizeDecreasingSupplier return toSet(); } return Collector.of( new COLLECTIONS.SizeDecreasingSupplier< #if KEYS_REFERENCE K, #endif OPEN_HASH_SET KEY_GENERIC>( expectedSize, (int size) -> size <= Hash.DEFAULT_INITIAL_SIZE ? new OPEN_HASH_SET KEY_GENERIC() : new OPEN_HASH_SET KEY_GENERIC(size)), OPEN_HASH_SET::add, OPEN_HASH_SET::combine #ifndef Linked , Collector.Characteristics.UNORDERED #endif ); } #endif #endif #ifdef Custom /** Returns the hashing strategy. * * @return the hashing strategy of this custom hash set. */ public STRATEGY KEY_SUPER_GENERIC strategy() { return strategy; } #endif private int realSize() { return containsNull ? size - 1 : size; } /** Ensures that this set can hold a certain number of elements without rehashing. * * @param capacity a number of elements; there will be no rehashing unless * the set {@linkplain #size() size} exceeds this number. */ public void ensureCapacity(final int capacity) { final int needed = arraySize(capacity, f); if (needed > n) rehash(needed); } private void tryCapacity(final long capacity) { final int needed = (int)Math.min(1 << 30, Math.max(2, HashCommon.nextPowerOfTwo((long)Math.ceil(capacity / f)))); if (needed > n) rehash(needed); } #if KEYS_PRIMITIVE @Override public boolean addAll(COLLECTION c) { if (f <= .5) ensureCapacity(c.size()); // The resulting collection will be sized for c.size() elements else tryCapacity(size() + c.size()); // The resulting collection will be tentatively sized for size() + c.size() elements return super.addAll(c); } #endif @Override public boolean addAll(Collection c) { // The resulting collection will be at least c.size() big if (f <= .5) ensureCapacity(c.size()); // The resulting collection will be sized for c.size() elements else tryCapacity(size() + c.size()); // The resulting collection will be tentatively sized for size() + c.size() elements return super.addAll(c); } @Override public boolean add(final KEY_GENERIC_TYPE k) { int pos; if (KEY_EQUALS_NULL(k)) { if (containsNull) return false; #ifdef Linked pos = n; #endif containsNull = true; #ifdef Custom key[n] = k; #endif } else { KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; // The starting point. if (! KEY_IS_NULL(curr = key[pos = KEY2INTHASH(k) & mask])) { if (KEY_EQUALS_NOT_NULL(curr, k)) return false; while(! KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) if (KEY_EQUALS_NOT_NULL(curr, k)) return false; } key[pos] = k; } #ifdef Linked if (size == 0) { first = last = pos; // Special case of SET_UPPER_LOWER(link[pos], -1, -1); link[pos] = -1L; } else { SET_NEXT(link[last], pos); SET_UPPER_LOWER(link[pos], last, -1); last = pos; } #endif if (size++ >= maxFill) rehash(arraySize(size + 1, f)); if (ASSERTS) checkTable(); return true; } #if KEY_CLASS_Object /** Add a random element if not present, get the existing value if already present. * * This is equivalent to (but faster than) doing a: *

	 * K exist = set.get(k);
	 * if (exist == null) {
	 *   set.add(k);
	 *   exist = k;
	 * }
	 * 
*/ public KEY_GENERIC_TYPE addOrGet(final KEY_GENERIC_TYPE k) { int pos; if (KEY_EQUALS_NULL(k)) { if (containsNull) return key [n]; #ifdef Linked pos = n; #endif containsNull = true; #ifdef Custom key [n] = k; #endif } else { KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; // The starting point. if (! KEY_IS_NULL(curr = key[pos = KEY2INTHASH(k) & mask])) { if (KEY_EQUALS_NOT_NULL(curr, k)) return curr; while(! KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) if (KEY_EQUALS_NOT_NULL(curr, k)) return curr; } key[pos] = k; } #ifdef Linked if (size == 0) { first = last = pos; // Special case of SET_UPPER_LOWER(link[pos], -1, -1); link[pos] = -1L; } else { SET_NEXT(link[last], pos); SET_UPPER_LOWER(link[pos], last, -1); last = pos; } #endif if (size++ >= maxFill) rehash(arraySize(size + 1, f)); if (ASSERTS) checkTable(); return k; } #endif /** Shifts left entries with the specified hash code, starting at the specified position, * and empties the resulting free entry. * * @param pos a starting position. */ protected final void shiftKeys(int pos) { // Shift entries with the same hash. int last, slot; KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; for(;;) { pos = ((last = pos) + 1) & mask; for(;;) { if (KEY_IS_NULL(curr = key[pos])) { key[last] = KEY_NULL; return; } slot = KEY2INTHASH(curr) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } key[last] = curr; #ifdef Linked fixPointers(pos, last); #endif } } private boolean removeEntry(final int pos) { size--; #ifdef Linked fixPointers(pos); #endif shiftKeys(pos); if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return true; } private boolean removeNullEntry() { containsNull = false; key[n] = KEY_NULL; size--; #ifdef Linked fixPointers(n); #endif if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return true; } SUPPRESS_WARNINGS_KEY_UNCHECKED @Override public boolean remove(final KEY_TYPE k) { if (KEY_EQUALS_NULL(KEY_GENERIC_CAST k)) { if (containsNull) return removeNullEntry(); return false; } KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; int pos; // The starting point. if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH_CAST(k) & mask])) return false; if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return removeEntry(pos); while(true) { if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return false; if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return removeEntry(pos); } } SUPPRESS_WARNINGS_KEY_UNCHECKED @Override public boolean contains(final KEY_TYPE k) { if (KEY_EQUALS_NULL(KEY_GENERIC_CAST k)) return containsNull; KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; int pos; // The starting point. if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH_CAST(k) & mask])) return false; if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return true; while(true) { if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return false; if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return true; } } #if KEY_CLASS_Object /** Returns the element of this set that is equal to the given key, or {@code null}. * @return the element of this set that is equal to the given key, or {@code null}. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public K get(final Object k) { if (KEY_EQUALS_NULL(KEY_GENERIC_CAST k)) return key[n]; // This is correct independently of the value of containsNull and of the set being custom KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; int pos; // The starting point. if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH_CAST(k) & mask])) return null; if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return curr; // There's always an unused entry. while(true) { if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return null; if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return curr; } } #endif #ifdef Linked /** Removes the first key in iteration order. * @return the first key. * @throws NoSuchElementException is this set is empty. */ public KEY_GENERIC_TYPE REMOVE_FIRST_KEY() { if (size == 0) throw new NoSuchElementException(); final int pos = first; // Abbreviated version of fixPointers(pos) if (size == 1) first = last = -1; else { first = GET_NEXT(link[pos]); if (0 <= first) { // Special case of SET_PREV(link[first], -1) link[first] |= (-1 & 0xFFFFFFFFL) << 32; } } final KEY_GENERIC_TYPE k = key[pos]; size--; if (KEY_EQUALS_NULL(k)) { containsNull = false; key[n] = KEY_NULL; } else shiftKeys(pos); if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return k; } /** Removes the the last key in iteration order. * @return the last key. * @throws NoSuchElementException is this set is empty. */ public KEY_GENERIC_TYPE REMOVE_LAST_KEY() { if (size == 0) throw new NoSuchElementException(); final int pos = last; // Abbreviated version of fixPointers(pos) if (size == 1) first = last = -1; else { last = GET_PREV(link[pos]); if (0 <= last) { // Special case of SET_NEXT(link[last], -1) link[last] |= -1 & 0xFFFFFFFFL; } } final KEY_GENERIC_TYPE k = key[pos]; size--; if (KEY_EQUALS_NULL(k)) { containsNull = false; key[n] = KEY_NULL; } else shiftKeys(pos); if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return k; } private void moveIndexToFirst(final int i) { if (size == 1 || first == i) return; if (last == i) { last = GET_PREV(link[i]); // Special case of SET_NEXT(link[last], -1); link[last] |= -1 & 0xFFFFFFFFL; } else { final long linki = link[i]; final int prev = GET_PREV(linki); final int next = GET_NEXT(linki); COPY_NEXT(link[prev], linki); COPY_PREV(link[next], linki); } SET_PREV(link[first], i); SET_UPPER_LOWER(link[i], -1, first); first = i; } private void moveIndexToLast(final int i) { if (size == 1 || last == i) return; if (first == i) { first = GET_NEXT(link[i]); // Special case of SET_PREV(link[first], -1); link[first] |= (-1 & 0xFFFFFFFFL) << 32; } else { final long linki = link[i]; final int prev = GET_PREV(linki); final int next = GET_NEXT(linki); COPY_NEXT(link[prev], linki); COPY_PREV(link[next], linki); } SET_NEXT(link[last], i); SET_UPPER_LOWER(link[i], last, -1); last = i; } /** Adds a key to the set; if the key is already present, it is moved to the first position of the iteration order. * * @param k the key. * @return true if the key was not present. */ public boolean addAndMoveToFirst(final KEY_GENERIC_TYPE k) { int pos; if (KEY_EQUALS_NULL(k)) { if (containsNull) { moveIndexToFirst(n); return false; } containsNull = true; pos = n; } else { // The starting point. final KEY_GENERIC_TYPE key[] = this.key; pos = KEY2INTHASH(k) & mask; // There's always an unused entry. TODO while(! KEY_IS_NULL(key[pos])) { if (KEY_EQUALS_NOT_NULL(k, key[pos])) { moveIndexToFirst(pos); return false; } pos = (pos + 1) & mask; } } key[pos] = k; if (size == 0) { first = last = pos; // Special case of SET_UPPER_LOWER(link[pos], -1, -1); link[pos] = -1L; } else { SET_PREV(link[first], pos); SET_UPPER_LOWER(link[pos], -1, first); first = pos; } if (size++ >= maxFill) rehash(arraySize(size, f)); if (ASSERTS) checkTable(); return true; } /** Adds a key to the set; if the key is already present, it is moved to the last position of the iteration order. * * @param k the key. * @return true if the key was not present. */ public boolean addAndMoveToLast(final KEY_GENERIC_TYPE k) { int pos; if (KEY_EQUALS_NULL(k)) { if (containsNull) { moveIndexToLast(n); return false; } containsNull = true; pos = n; } else { // The starting point. final KEY_GENERIC_TYPE key[] = this.key; pos = KEY2INTHASH(k) & mask; // There's always an unused entry. while(! KEY_IS_NULL(key[pos])) { if (KEY_EQUALS_NOT_NULL(k, key[pos])) { moveIndexToLast(pos); return false; } pos = (pos + 1) & mask; } } key[pos] = k; if (size == 0) { first = last = pos; // Special case of SET_UPPER_LOWER(link[pos], -1, -1); link[pos] = -1L; } else { SET_NEXT(link[last], pos); SET_UPPER_LOWER(link[pos], last, -1); last = pos; } if (size++ >= maxFill) rehash(arraySize(size, f)); if (ASSERTS) checkTable(); return true; } #endif /* Removes all elements from this set. * *

To increase object reuse, this method does not change the table size. * If you want to reduce the table size, you must use {@link #trim()}. * */ @Override public void clear() { if (size == 0) return; size = 0; containsNull = false; Arrays.fill(key, KEY_NULL); #ifdef Linked first = last = -1; #endif } @Override public int size() { return size; } @Override public boolean isEmpty() { return size == 0; } #ifdef Linked /** Modifies the {@link #link} vector so that the given entry is removed. * This method will complete in constant time. * * @param i the index of an entry. */ protected void fixPointers(final int i) { if (size == 0) { first = last = -1; return; } if (first == i) { first = GET_NEXT(link[i]); if (0 <= first) { // Special case of SET_PREV(link[first], -1) link[first] |= (-1 & 0xFFFFFFFFL) << 32; } return; } if (last == i) { last = GET_PREV(link[i]); if (0 <= last) { // Special case of SET_NEXT(link[last], -1) link[last] |= -1 & 0xFFFFFFFFL; } return; } final long linki = link[i]; final int prev = GET_PREV(linki); final int next = GET_NEXT(linki); COPY_NEXT(link[prev], linki); COPY_PREV(link[next], linki); } /** Modifies the {@link #link} vector for a shift from s to d. * This method will complete in constant time. * * @param s the source position. * @param d the destination position. */ protected void fixPointers(int s, int d) { if (size == 1) { first = last = d; // Special case of SET(link[d], -1, -1) link[d] = -1L; return; } if (first == s) { first = d; SET_PREV(link[GET_NEXT(link[s])], d); link[d] = link[s]; return; } if (last == s) { last = d; SET_NEXT(link[GET_PREV(link[s])], d); link[d] = link[s]; return; } final long links = link[s]; final int prev = GET_PREV(links); final int next = GET_NEXT(links); SET_NEXT(link[prev], d); SET_PREV(link[next], d); link[d] = links; } /** Returns the first element of this set in iteration order. * * @return the first element in iteration order. */ @Override public KEY_GENERIC_TYPE FIRST() { if (size == 0) throw new NoSuchElementException(); return key[first]; } /** Returns the last element of this set in iteration order. * * @return the last element in iteration order. */ @Override public KEY_GENERIC_TYPE LAST() { if (size == 0) throw new NoSuchElementException(); return key[last]; } /** {@inheritDoc} * @implSpec This implementation just throws an {@link UnsupportedOperationException}.*/ @Override public SORTED_SET KEY_GENERIC tailSet(KEY_GENERIC_TYPE from) { throw new UnsupportedOperationException(); } /** {@inheritDoc} * @implSpec This implementation just throws an {@link UnsupportedOperationException}.*/ @Override public SORTED_SET KEY_GENERIC headSet(KEY_GENERIC_TYPE to) { throw new UnsupportedOperationException(); } /** {@inheritDoc} * @implSpec This implementation just throws an {@link UnsupportedOperationException}.*/ @Override public SORTED_SET KEY_GENERIC subSet(KEY_GENERIC_TYPE from, KEY_GENERIC_TYPE to) { throw new UnsupportedOperationException(); } /** {@inheritDoc} * @implSpec This implementation just returns {@code null}.*/ @Override public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return null; } /** A list iterator over a linked set. * *

This class provides a list iterator over a linked hash set. The constructor runs in constant time. */ private final class SetIterator implements KEY_LIST_ITERATOR KEY_GENERIC { /** The entry that will be returned by the next call to {@link java.util.ListIterator#previous()} (or {@code null} if no previous entry exists). */ int prev = -1; /** The entry that will be returned by the next call to {@link java.util.ListIterator#next()} (or {@code null} if no next entry exists). */ int next = -1; /** The last entry that was returned (or -1 if we did not iterate or used {@link #remove()}). */ int curr = -1; /** The current index (in the sense of a {@link java.util.ListIterator}). When -1, we do not know the current index.*/ int index = -1; SetIterator() { next = first; index = 0; } SetIterator(KEY_GENERIC_TYPE from) { if (KEY_EQUALS_NULL(from)) { if (OPEN_HASH_SET.this.containsNull) { next = GET_NEXT(link[n]); prev = n; return; } else throw new NoSuchElementException("The key " + from + " does not belong to this set."); } if (KEY_EQUALS(key[last], from)) { prev = last; index = size; return; } // The starting point. final KEY_GENERIC_TYPE key[] = OPEN_HASH_SET.this.key; int pos = KEY2INTHASH(from) & mask; // There's always an unused entry. while(! KEY_IS_NULL(key[pos])) { if (KEY_EQUALS_NOT_NULL(key[pos], from)) { // Note: no valid index known. next = GET_NEXT(link[pos]); prev = pos; return; } pos = (pos + 1) & mask; } throw new NoSuchElementException("The key " + from + " does not belong to this set."); } @Override public boolean hasNext() { return next != -1; } @Override public boolean hasPrevious() { return prev != -1; } @Override public KEY_GENERIC_TYPE NEXT_KEY() { if (! hasNext()) throw new NoSuchElementException(); curr = next; next = GET_NEXT(link[curr]); prev = curr; if (index >= 0) index++; if (ASSERTS) assert curr == n || ! KEY_IS_NULL(key[curr]) : "Position " + curr + " is not used"; return key[curr]; } @Override public KEY_GENERIC_TYPE PREV_KEY() { if (! hasPrevious()) throw new NoSuchElementException(); curr = prev; prev = GET_PREV(link[curr]); next = curr; if (index >= 0) index--; return key[curr]; } @Override public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { final KEY_GENERIC_TYPE key[] = OPEN_HASH_SET.this.key; final long link[] = OPEN_HASH_SET.this.link; while (next != -1) { curr = next; next = GET_NEXT(link[curr]); prev = curr; if (index >= 0) index++; if (ASSERTS) assert curr == n || ! KEY_IS_NULL(key[curr]) : "Position " + curr + " is not used"; action.accept(key[curr]); } } private final void ensureIndexKnown() { if (index >= 0) return; if (prev == -1) { index = 0; return; } if (next == -1) { index = size; return; } int pos = first; index = 1; while(pos != prev) { pos = GET_NEXT(link[pos]); index++; } } @Override public int nextIndex() { ensureIndexKnown(); return index; } @Override public int previousIndex() { ensureIndexKnown(); return index - 1; } @Override public void remove() { ensureIndexKnown(); if (curr == -1) throw new IllegalStateException(); if (curr == prev) { /* If the last operation was a next(), we are removing an entry that preceeds * the current index, and thus we must decrement it. */ index--; prev = GET_PREV(link[curr]); } else next = GET_NEXT(link[curr]); size--; /* Now we manually fix the pointers. Because of our knowledge of next * and prev, this is going to be faster than calling fixPointers(). */ if (prev == -1) first = next; else SET_NEXT(link[prev], next); if (next == -1) last = prev; else SET_PREV(link[next], prev); int last, slot, pos = curr; curr = -1; if (pos == n) { OPEN_HASH_SET.this.containsNull = false; OPEN_HASH_SET.this.key[n] = KEY_NULL; } else { KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = OPEN_HASH_SET.this.key; // We have to horribly duplicate the shiftKeys() code because we need to update next/prev. for(;;) { pos = ((last = pos) + 1) & mask; for(;;) { if (KEY_IS_NULL(curr = key[pos])) { key[last] = KEY_NULL; return; } slot = KEY2INTHASH(curr) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } key[last] = curr; if (next == pos) next = last; if (prev == pos) prev = last; fixPointers(pos, last); } } } } /** Returns a type-specific list iterator on the elements in this set, starting from a given element of the set. * Please see the class documentation for implementation details. * * @param from an element to start from. * @return a type-specific list iterator starting at the given element. * @throws IllegalArgumentException if {@code from} does not belong to the set. */ @Override public KEY_LIST_ITERATOR KEY_GENERIC iterator(KEY_GENERIC_TYPE from) { return new SetIterator(from); } /** Returns a type-specific list iterator on the elements in this set, starting from the first element. * Please see the class documentation for implementation details. * * @return a type-specific list iterator starting at the first element. */ @Override public KEY_LIST_ITERATOR KEY_GENERIC iterator() { return new SetIterator(); } private static final int SPLITERATOR_CHARACTERISTICS = SPLITERATORS.SET_SPLITERATOR_CHARACTERISTICS | java.util.Spliterator.ORDERED; /** {@inheritDoc} * *

There isn't a way to split efficiently while still preserving order for a linked data structure, * so this implementation is just backed by the iterator. Thus, this spliterator is not well optimized * for parallel streams. * *

Note, contrary to the specification of {@link java.util.SortedSet}, this spliterator does not, * report {@link java.util.Spliterator#SORTED}. This is because iteration order is based on insertion * order, not natural ordering. */ @Override public KEY_SPLITERATOR KEY_GENERIC spliterator() { return SPLITERATORS.asSpliterator( iterator(), it.unimi.dsi.fastutil.Size64.sizeOf(this), SPLITERATOR_CHARACTERISTICS); } @Override public void forEach(final METHOD_ARG_KEY_CONSUMER action) { int curr; int next = first; while (next != -1) { curr = next; next = GET_NEXT(link[curr]); if (ASSERTS) assert curr == n || ! KEY_IS_NULL(key[curr]) : "Position " + curr + " is not used"; action.accept(key[curr]); } } #else /** An iterator over a hash set. */ private final class SetIterator implements KEY_ITERATOR KEY_GENERIC { /** The index of the last entry returned, if positive or zero; initially, {@link #n}. If negative, the last element returned was that of index {@code - pos - 1} from the {@link #wrapped} list. */ int pos = n; /** The index of the last entry that has been returned (more precisely, the value of {@link #pos} if {@link #pos} is positive, or {@link Integer#MIN_VALUE} if {@link #pos} is negative). It is -1 if either we did not return an entry yet, or the last returned entry has been removed. */ int last = -1; /** A downward counter measuring how many entries must still be returned. */ int c = size; /** A boolean telling us whether we should return the null key. */ boolean mustReturnNull = OPEN_HASH_SET.this.containsNull; /** A lazily allocated list containing elements that have wrapped around the table because of removals. */ ARRAY_LIST KEY_GENERIC wrapped; @Override public boolean hasNext() { return c != 0; } @Override public KEY_GENERIC_TYPE NEXT_KEY() { if (! hasNext()) throw new NoSuchElementException(); c--; if (mustReturnNull) { mustReturnNull = false; last = n; return key[n]; } final KEY_GENERIC_TYPE key[] = OPEN_HASH_SET.this.key; for(;;) { if (--pos < 0) { // We are just enumerating elements from the wrapped list. last = Integer.MIN_VALUE; return wrapped.GET_KEY(- pos - 1); } if (! KEY_IS_NULL(key[pos])) return key[last = pos]; } } /** Shifts left entries with the specified hash code, starting at the specified position, * and empties the resulting free entry. * * @param pos a starting position. */ private final void shiftKeys(int pos) { // Shift entries with the same hash. int last, slot; KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = OPEN_HASH_SET.this.key; for(;;) { pos = ((last = pos) + 1) & mask; for(;;) { if (KEY_IS_NULL(curr = key[pos])) { key[last] = KEY_NULL; return; } slot = KEY2INTHASH(curr) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } if (pos < last) { // Wrapped entry. if (wrapped == null) wrapped = new ARRAY_LIST KEY_GENERIC_DIAMOND(2); wrapped.add(key[pos]); } key[last] = curr; } } @Override public void remove() { if (last == -1) throw new IllegalStateException(); if (last == n) { OPEN_HASH_SET.this.containsNull = false; OPEN_HASH_SET.this.key[n] = KEY_NULL; } else if (pos >= 0) shiftKeys(last); else { // We're removing wrapped entries. #if KEYS_REFERENCE OPEN_HASH_SET.this.remove(wrapped.set(- pos - 1, null)); #else OPEN_HASH_SET.this.remove(wrapped.GET_KEY(- pos - 1)); #endif last = -1; // Note that we must not decrement size return; } size--; last = -1; // You can no longer remove this entry. if (ASSERTS) checkTable(); } @Override public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { final KEY_GENERIC_TYPE key[] = OPEN_HASH_SET.this.key; if (mustReturnNull) { mustReturnNull = false; last = n; action.accept(key[n]); c--; } while(c != 0) { if (--pos < 0) { // We are just enumerating elements from the wrapped list. last = Integer.MIN_VALUE; action.accept(wrapped.GET_KEY(- pos - 1)); c--; } else if (! KEY_IS_NULL(key[pos])) { action.accept(key[last = pos]); c--; } } } } @Override public KEY_ITERATOR KEY_GENERIC iterator() { return new SetIterator(); } private final class SetSpliterator implements KEY_SPLITERATOR KEY_GENERIC { private static final int POST_SPLIT_CHARACTERISTICS = SPLITERATORS.SET_SPLITERATOR_CHARACTERISTICS & ~java.util.Spliterator.SIZED; /** The index (which bucket) of the next item to give to the action. * Unlike {@link SetIterator}, this counts up instead of down. */ int pos = 0; /** The maximum bucket (exclusive) to iterate to */ int max = n; /** An upwards counter counting how many we have given */ int c = 0; /** A boolean telling us whether we should return the null key. */ boolean mustReturnNull = OPEN_HASH_SET.this.containsNull; boolean hasSplit = false; SetSpliterator() {} SetSpliterator(int pos, int max, boolean mustReturnNull, boolean hasSplit) { this.pos = pos; this.max = max; this.mustReturnNull = mustReturnNull; this.hasSplit = hasSplit; } @Override public boolean tryAdvance(final METHOD_ARG_KEY_CONSUMER action) { if (mustReturnNull) { mustReturnNull = false; ++c; action.accept(key[n]); return true; } final KEY_GENERIC_TYPE key[] = OPEN_HASH_SET.this.key; while (pos < max) { if (! KEY_IS_NULL(key[pos])) { ++c; action.accept(key[pos++]); return true; } else { ++pos; } } return false; } @Override public void forEachRemaining(final METHOD_ARG_KEY_CONSUMER action) { final KEY_GENERIC_TYPE key[] = OPEN_HASH_SET.this.key; if (mustReturnNull) { mustReturnNull = false; action.accept(key[n]); ++c; } while (pos < max) { if (! KEY_IS_NULL(key[pos])) { action.accept(key[pos]); ++c; } ++pos; } } @Override public int characteristics() { return hasSplit ? POST_SPLIT_CHARACTERISTICS : SPLITERATORS.SET_SPLITERATOR_CHARACTERISTICS; } @Override public long estimateSize() { if (!hasSplit) { // Root spliterator; we know how many are remaining. return size - c; } else { // After we split, we can no longer know exactly how many we have (or at least not efficiently). // (size / n) * (max - pos) aka currentTableDensity * numberOfBucketsLeft seems like a good estimate. return Math.min(size - c, (long)(((double)realSize() / n) * (max - pos)) + (mustReturnNull ? 1 : 0)); } } @Override public SetSpliterator trySplit() { if (pos >= max - 1) return null; int retLen = (max - pos) >> 1; if (retLen <= 1) return null; int myNewPos = pos + retLen; int retPos = pos; int retMax = myNewPos; // Since null is returned first, and the convention is that the returned split is the prefix of elements, // the split will take care of returning null (if needed), and we won't return it anymore. SetSpliterator split = new SetSpliterator(retPos, retMax, mustReturnNull, true); this.pos = myNewPos; this.mustReturnNull = false; this.hasSplit = true; return split; } @Override public long skip(long n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); if (n == 0) return 0; long skipped = 0; if (mustReturnNull) { mustReturnNull = false; ++skipped; --n; } final KEY_GENERIC_TYPE key[] = OPEN_HASH_SET.this.key; while (pos < max && n > 0) { if (! KEY_IS_NULL(key[pos++])) { ++skipped; --n; } } return skipped; } } @Override public KEY_SPLITERATOR KEY_GENERIC spliterator() { return new SetSpliterator(); } @Override public void forEach(final METHOD_ARG_KEY_CONSUMER action) { if (containsNull) action.accept(key[n]); final KEY_GENERIC_TYPE key[] = this.key; for(int pos = n; pos-- != 0; ) if (! KEY_IS_NULL(key[pos])) action.accept(key[pos]); } #endif /** Rehashes this set, making the table as small as possible. * *

This method rehashes the table to the smallest size satisfying the * load factor. It can be used when the set will not be changed anymore, so * to optimize access speed and size. * *

If the table size is already the minimum possible, this method * does nothing. * * @return true if there was enough memory to trim the set. * @see #trim(int) */ public boolean trim() { return trim(size); } /** Rehashes this set if the table is too large. * *

Let N be the smallest table size that can hold * max(n,{@link #size()}) entries, still satisfying the load factor. If the current * table size is smaller than or equal to N, this method does * nothing. Otherwise, it rehashes this set in a table of size * N. * *

This method is useful when reusing sets. {@linkplain #clear() Clearing a * set} leaves the table size untouched. If you are reusing a set * many times, you can call this method with a typical * size to avoid keeping around a very large table just * because of a few large transient sets. * * @param n the threshold for the trimming. * @return true if there was enough memory to trim the set. * @see #trim() */ public boolean trim(final int n) { final int l = HashCommon.nextPowerOfTwo((int)Math.ceil(n / f)); if (l >= this.n || size > maxFill(l, f)) return true; try { rehash(l); } catch(OutOfMemoryError cantDoIt) { return false; } return true; } /** Rehashes the set. * *

This method implements the basic rehashing strategy, and may be * overriden by subclasses implementing different rehashing strategies (e.g., * disk-based rehashing). However, you should not override this method * unless you understand the internal workings of this class. * * @param newN the new size */ SUPPRESS_WARNINGS_KEY_UNCHECKED protected void rehash(final int newN) { final KEY_GENERIC_TYPE key[] = this.key; final int mask = newN - 1; // Note that this is used by the hashing macro final KEY_GENERIC_TYPE newKey[] = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[newN + 1]; #ifdef Linked int i = first, prev = -1, newPrev = -1, t, pos; final long link[] = this.link; final long newLink[] = new long[newN + 1]; first = -1; for(int j = size; j-- != 0;) { if (KEY_EQUALS_NULL(key[i])) pos = newN; else { pos = KEY2INTHASH(key[i]) & mask; while (! KEY_IS_NULL(newKey[pos])) pos = (pos + 1) & mask; } newKey[pos] = key[i]; if (prev != -1) { SET_NEXT(newLink[newPrev], pos); SET_PREV(newLink[pos], newPrev); newPrev = pos; } else { newPrev = first = pos; // Special case of SET(newLink[pos], -1, -1); newLink[pos] = -1L; } t = i; i = GET_NEXT(link[i]); prev = t; } this.link = newLink; this.last = newPrev; if (newPrev != -1) // Special case of SET_NEXT(newLink[newPrev], -1); newLink[newPrev] |= -1 & 0xFFFFFFFFL; #else int i = n, pos; for(int j = realSize(); j-- != 0;) { while(KEY_IS_NULL(key[--i])); if (! KEY_IS_NULL(newKey[pos = KEY2INTHASH(key[i]) & mask])) while (! KEY_IS_NULL(newKey[pos = (pos + 1) & mask])); newKey[pos] = key[i]; } #endif n = newN; this.mask = mask; maxFill = maxFill(n, f); this.key = newKey; } /** Returns a deep copy of this set. * *

This method performs a deep copy of this hash set; the data stored in the * set, however, is not cloned. Note that this makes a difference only for object keys. * * @return a deep copy of this set. */ @Override SUPPRESS_WARNINGS_KEY_UNCHECKED public OPEN_HASH_SET KEY_GENERIC clone() { OPEN_HASH_SET KEY_GENERIC c; try { c = (OPEN_HASH_SET KEY_GENERIC)super.clone(); } catch(CloneNotSupportedException cantHappen) { throw new InternalError(); } c.key = key.clone(); c.containsNull = containsNull; #ifdef Linked c.link = link.clone(); #endif #ifdef Custom c.strategy = strategy; #endif return c; } /** Returns a hash code for this set. * * This method overrides the generic method provided by the superclass. * Since {@code equals()} is not overriden, it is important * that the value returned by this method is the same value as * the one returned by the overriden method. * * @return a hash code for this set. */ @Override public int hashCode() { int h = 0; for(int j = realSize(), i = 0; j-- != 0;) { while(KEY_IS_NULL(key[i])) i++; #if KEYS_REFERENCE if (this != key[i]) #endif h += KEY2JAVAHASH_NOT_NULL(key[i]); i++; } // Zero / null have hash zero. return h; } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { final KEY_ITERATOR KEY_GENERIC i = iterator(); s.defaultWriteObject(); for(int j = size; j-- != 0;) s.WRITE_KEY(i.NEXT_KEY()); } SUPPRESS_WARNINGS_KEY_UNCHECKED private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); n = arraySize(size, f); maxFill = maxFill(n, f); mask = n - 1; final KEY_GENERIC_TYPE key[] = this.key = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[n + 1]; #ifdef Linked final long link[] = this.link = new long[n + 1]; int prev = -1; first = last = -1; #endif KEY_GENERIC_TYPE k; for(int i = size, pos; i-- != 0;) { k = KEY_GENERIC_CAST s.READ_KEY(); if (KEY_EQUALS_NULL(k)) { pos = n; containsNull = true; } else { if (! KEY_IS_NULL(key[pos = KEY2INTHASH(k) & mask])) while (! KEY_IS_NULL(key[pos = (pos + 1) & mask])); } key[pos] = k; #ifdef Linked if (first != -1) { SET_NEXT(link[prev], pos); SET_PREV(link[pos], prev); prev = pos; } else { prev = first = pos; // Special case of SET_PREV(newLink[pos], -1); link[pos] |= (-1L & 0xFFFFFFFFL) << 32; } #endif } #ifdef Linked last = prev; if (prev != -1) // Special case of SET_NEXT(link[prev], -1); link[prev] |= -1 & 0xFFFFFFFFL; #endif if (ASSERTS) checkTable(); } #ifdef ASSERTS_CODE private void checkTable() { assert (n & -n) == n : "Table length is not a power of two: " + n; assert n == key.length - 1; int n = key.length - 1; while(n-- != 0) if (! KEY_IS_NULL(key[n]) && ! contains(key[n])) throw new AssertionError("Hash table has key " + key[n] + " marked as occupied, but the key does not belong to the table"); #if KEYS_PRIMITIVE java.util.HashSet s = new java.util.HashSet (); #else java.util.HashSet s = new java.util.HashSet(); #endif for(int i = key.length - 1; i-- != 0;) if (! KEY_IS_NULL(key[i]) && ! s.add(key[i])) throw new AssertionError("Key " + key[i] + " appears twice at position " + i); #ifdef Linked KEY_LIST_ITERATOR KEY_GENERIC i = iterator(); KEY_GENERIC_TYPE k; n = size(); while(n-- != 0) if (! contains(k = i.NEXT_KEY())) throw new AssertionError("Linked hash table forward enumerates key " + k + ", but the key does not belong to the table"); if (i.hasNext()) throw new AssertionError("Forward iterator not exhausted"); n = size(); if (n > 0) { i = iterator(LAST()); while(n-- != 0) if (! contains(k = i.PREV_KEY())) throw new AssertionError("Linked hash table backward enumerates key " + k + ", but the key does not belong to the table"); if (i.hasPrevious()) throw new AssertionError("Previous iterator not exhausted"); } #endif } #else private void checkTable() {} #endif #ifdef TEST private static long seed = System.currentTimeMillis(); private static java.util.Random r = new java.util.Random(seed); private static KEY_TYPE genKey() { #if KEY_CLASS_Byte || KEY_CLASS_Short || KEY_CLASS_Character return (KEY_TYPE)(r.nextInt()); #elif KEYS_PRIMITIVE return r.NEXT_KEY(); #elif KEY_CLASS_Object #ifdef Custom int i = r.nextInt(3); byte a[] = new byte[i]; while(i-- != 0) a[i] = (byte)r.nextInt(); return a; #else return Integer.toBinaryString(r.nextInt()); #endif #else return new java.io.Serializable() {}; #endif } private static final class ArrayComparator implements java.util.Comparator { public int compare(Object a, Object b) { byte[] aa = (byte[])a; byte[] bb = (byte[])b; int length = Math.min(aa.length, bb.length); for(int i = 0; i < length; i++) { if (aa[i] < bb[i]) return -1; if (aa[i] > bb[i]) return 1; } return aa.length == bb.length ? 0 : (aa.length < bb.length ? -1 : 1); } } private static final class MockSet extends java.util.TreeSet { private java.util.List list = new java.util.ArrayList(); public MockSet(java.util.Comparator c) { super(c); } public boolean add(Object k) { if (! contains(k)) list.add(k); return super.add(k); } public boolean addAll(Collection c) { java.util.Iterator i = c.iterator(); boolean result = false; while(i.hasNext()) result |= add(i.next()); return result; } public boolean removeAll(Collection c) { java.util.Iterator i = c.iterator(); boolean result = false; while(i.hasNext()) result |= remove(i.next()); return result; } public boolean remove(Object k) { if (contains(k)) { int i = list.size(); while(i-- != 0) if (comparator().compare(list.get(i), k) == 0) { list.remove(i); break; } } return super.remove(k); } private void justRemove(Object k) { super.remove(k); } public java.util.Iterator iterator() { return new java.util.Iterator() { final java.util.Iterator iterator = list.iterator(); Object curr; public Object next() { return curr = iterator.next(); } public boolean hasNext() { return iterator.hasNext(); } public void remove() { justRemove(curr); iterator.remove(); } }; } } private static java.text.NumberFormat format = new java.text.DecimalFormat("#,###.00"); private static java.text.FieldPosition fp = new java.text.FieldPosition(0); private static String format(double d) { StringBuffer s = new StringBuffer(); return format.format(d, s, fp).toString(); } private static final int WARMUP_CYCLES = 12; private static final int NUM_RUNS = 50; private static final int GC_EVERY = 5; private static void speedTest(int n, float f, boolean comp) { #ifndef Custom int i, j; OPEN_HASH_SET m; #ifdef Linked java.util.LinkedHashSet t; #else java.util.HashSet t; #endif KEY_TYPE k[] = new KEY_TYPE[n]; KEY_TYPE nk[] = new KEY_TYPE[n]; long ns; for(i = 0; i < n; i++) { k[i] = genKey(); nk[i] = genKey(); } double totAdd = 0, totYes = 0, totNo = 0, totIter = 0, totRemYes = 0, totRemNo = 0, toStreamSum = 0, d; if (comp) { for(j = 0; j < NUM_RUNS; j++) { if ((j + 1) % GC_EVERY == 0) System.gc(); #ifdef Linked t = new java.util.LinkedHashSet(16); #else t = new java.util.HashSet(16); #endif /* We add pairs to t. */ ns = System.nanoTime(); for(i = 0; i < n; i++) t.add(KEY2OBJ(k[i])); d = (System.nanoTime() - ns) / (double)n; if (j >= WARMUP_CYCLES) totAdd += d; System.out.print("Add: " + format(d) + "ns "); /* We check for pairs in t. */ ns = System.nanoTime(); for(i = 0; i < n; i++) t.contains(KEY2OBJ(k[i])); d = (System.nanoTime() - ns) / (double)n; if (j >= WARMUP_CYCLES) totYes += d; System.out.print("Yes: " + format(d) + "ns "); /* We check for pairs not in t. */ ns = System.nanoTime(); for(i = 0; i < n; i++) t.contains(KEY2OBJ(nk[i])); d = (System.nanoTime() - ns) / (double)n; if (j >= WARMUP_CYCLES) totNo += d; System.out.print("No: " + format(d) + "ns "); /* We iterate on t. */ ns = System.nanoTime(); for(java.util.Iterator it = t.iterator(); it.hasNext(); it.next()); d = (System.nanoTime() - ns) / (double)n; if (j >= WARMUP_CYCLES) totIter += d; System.out.print("Iter: " + format(d) + "ns "); #if KEYS_PRIMITIVE && ! KEY_CLASS_Boolean /* We sum on t. */ ns = System.nanoTime(); #if KEYS_BYTE_CHAR_SHORT_FLOAT // Since the primitive stream has to upcast to a widened primitive, for fairness we will upcast here too #endif #if KEY_CLASS_Character ((java.util.Set)t).stream().MAP_TO_KEY_WIDENED(Character::charValue).sum(); #else ((java.util.Set)t).stream().MAP_TO_KEY_WIDENED(KEY_CLASS::KEY_WIDENED_VALUE).sum(); #endif d = (System.nanoTime() - ns) / (double)n; if (j >= WARMUP_CYCLES) toStreamSum += d; System.out.print("Stream sum: " + format(d) + "ns "); #endif // Too expensive in the linked case #ifndef Linked /* We delete pairs not in t. */ ns = System.nanoTime(); for(i = 0; i < n; i++) t.remove(KEY2OBJ(nk[i])); d = (System.nanoTime() - ns) / (double)n; if (j >= WARMUP_CYCLES) totRemNo += d; System.out.print("RemNo: " + format(d) + "ns "); /* We delete pairs in t. */ ns = System.nanoTime(); for(i = 0; i < n; i++) t.remove(KEY2OBJ(k[i])); d = (System.nanoTime() - ns) / (double)n; if (j >= WARMUP_CYCLES) totRemYes += d; System.out.print("RemYes: " + format(d) + "ns "); #endif System.out.println(); } System.out.println(); System.out.println("java.util Add: " + format(totAdd/(j-WARMUP_CYCLES)) + "ns Yes: " + format(totYes/(j-WARMUP_CYCLES)) + "ns No: " + format(totNo/(j-WARMUP_CYCLES)) + "ns Iter: " + format(totIter/(j-WARMUP_CYCLES)) + "ns StreamSum: " + format(toStreamSum/(j-WARMUP_CYCLES)) + "ns RemNo: " + format(totRemNo/(j-WARMUP_CYCLES)) + "ns RemYes: " + format(totRemYes/(j-WARMUP_CYCLES)) + "ns"); System.out.println(); totAdd = totYes = totNo = totIter = totRemYes = totRemNo = toStreamSum = 0; } for(j = 0; j < NUM_RUNS; j++) { if ((j + 1) % GC_EVERY == 0) System.gc(); m = new OPEN_HASH_SET(16, f); /* We add pairs to m. */ ns = System.nanoTime(); for(i = 0; i < n; i++) m.add(k[i]); d = (System.nanoTime() - ns) / (double)n; if (j >= WARMUP_CYCLES) totAdd += d; System.out.print("Add: " + format(d) + "ns "); /* We check for pairs in m. */ ns = System.nanoTime(); for(i = 0; i < n; i++) m.contains(k[i]); d = (System.nanoTime() - ns) / (double)n; if (j >= WARMUP_CYCLES) totYes += d; System.out.print("Yes: " + format(d) + "ns "); /* We check for pairs not in m. */ ns = System.nanoTime(); for(i = 0; i < n; i++) m.contains(nk[i]); d = (System.nanoTime() - ns) / (double)n; if (j >= WARMUP_CYCLES) totNo += d; System.out.print("No: " + format(d) + "ns "); /* We iterate on m. */ ns = System.nanoTime(); for(KEY_ITERATOR it = (KEY_ITERATOR)m.iterator(); it.hasNext(); it.NEXT_KEY()); d = (System.nanoTime() - ns) / (double)n; if (j >= WARMUP_CYCLES) totIter += d; System.out.print("Iter: " + format(d) + "ns "); #if KEYS_PRIMITIVE && ! KEY_CLASS_Boolean /* We sum on t. */ ns = System.nanoTime(); m.KEY_WIDENED_STREAM_METHOD().sum(); d = (System.nanoTime() - ns) / (double)n; if (j >= WARMUP_CYCLES) toStreamSum += d; System.out.print("Stream sum: " + format(d) + "ns "); #endif // Too expensive in the linked case #ifndef Linked /* We delete pairs not in m. */ ns = System.nanoTime(); for(i = 0; i < n; i++) m.remove(nk[i]); d = (System.nanoTime() - ns) / (double)n; if (j >= WARMUP_CYCLES) totRemNo += d; System.out.print("RemNo: " + format(d) + "ns "); /* We delete pairs in m. */ ns = System.nanoTime(); for(i = 0; i < n; i++) m.remove(k[i]); d = (System.nanoTime() - ns) / (double)n; if (j >= WARMUP_CYCLES) totRemYes += d; System.out.print("RemYes: " + format(d) + "ns "); #endif System.out.println(); } System.out.println(); System.out.println("fastutil Add: " + format(totAdd/(j-WARMUP_CYCLES)) + "ns Yes: " + format(totYes/(j-WARMUP_CYCLES)) + "ns No: " + format(totNo/(j-WARMUP_CYCLES)) + "ns Iter: " + format(totIter/(j-WARMUP_CYCLES)) + "ns StreamSum: " + format(toStreamSum/(j-WARMUP_CYCLES)) + "ns RemNo: " + format(totRemNo/(j-WARMUP_CYCLES)) + "ns RemYes: " + format(totRemYes/(j-WARMUP_CYCLES)) + "ns"); System.out.println(); #endif } private static void fatal(String msg) { throw new AssertionError(msg); } private static void ensure(boolean cond, String msg) { if (cond) return; fatal(msg); } private static void printProbes(OPEN_HASH_SET m) { long totProbes = 0; double totSquareProbes = 0; int maxProbes = 0; final double f = (double)m.size / m.n; for(int i = 0, c = 0; i < m.n; i++) { if (! KEY_IS_NULL(m.key[i])) c++; else { if (c != 0) { final long p = (c + 1) * (c + 2) / 2; totProbes += p; totSquareProbes += (double)p * p; } maxProbes = Math.max(c, maxProbes); c = 0; totProbes++; totSquareProbes++; } } final double expected = (double)totProbes / m.n; System.err.println("Expected probes: " + ( 3 * Math.sqrt(3) * (f / ((1 - f) * (1 - f))) + 4 / (9 * f) - 1 ) + "; actual: " + expected + "; stddev: " + Math.sqrt(totSquareProbes / m.n - expected * expected) + "; max probes: " + maxProbes); } private static void runTest(int n, float f) throws Exception { #if !defined(Custom) || KEYS_REFERENCE int c; #ifdef Custom OPEN_HASH_SET m = new OPEN_HASH_SET(Hash.DEFAULT_INITIAL_SIZE, f, it.unimi.dsi.fastutil.bytes.ByteArrays.HASH_STRATEGY); #else OPEN_HASH_SET m = new OPEN_HASH_SET(Hash.DEFAULT_INITIAL_SIZE, f); #endif #ifdef Linked #ifdef Custom java.util.Set t = new MockSet(new ArrayComparator()); #else java.util.Set t = new java.util.LinkedHashSet(); #endif #else #ifdef Custom java.util.Set t = new java.util.TreeSet(new ArrayComparator()); #else java.util.Set t = new java.util.HashSet(); #endif #endif /* First of all, we fill t with random data. */ for(int i=0; i i = m.stream(); java.util.stream.Stream j = t.stream(); #elif KEY_CLASS_Boolean java.util.stream.Stream i = m.stream(); java.util.stream.Stream j = t.stream(); #else JDK_PRIMITIVE_STREAM i = m.KEY_WIDENED_STREAM_METHOD(); java.util.stream.Stream j = t.stream(); #endif #if (!defined Linked || defined Custom) && KEYS_REFERENCE // There is no good way to order arbitrary, non-Comparable objects in a consistent way. // Ordering by Object.hashCode is tempting, but can conflict (two difference objects can have the same hashCode) // Thus, we will dump into a JDK set, whose equals method will make sure they have the same in any order. java.util.Set iSet = i.collect(java.util.stream.Collectors.toSet()); java.util.Set jSet = j.collect(java.util.stream.Collectors.toSet()); ensure(iSet.equals(jSet), "! same contents in stream"); #else #if !defined Linked && !KEYS_REFERENCE // Impose ordering to make arrays consistent even though backing data is not ordered. i = i.sorted(); j = j.sorted(); #endif #if KEYS_REFERENCE || KEY_CLASS_Boolean Object[] iArray = i.toArray(); Object[] jArray = j.toArray(); #elif KEY_CLASS_Character int[] iArray = i.toArray(); int[] jArray = j.mapToInt(Character::charValue).toArray(); #else KEY_TYPE_WIDENED[] iArray = i.toArray(); KEY_TYPE_WIDENED[] jArray = j.MAP_TO_KEY_WIDENED(Number::KEY_WIDENED_VALUE).toArray(); #endif ensure(java.util.Arrays.equals(iArray, jArray), "! sorted arrays equal"); #endif } int h = m.hashCode(); /* Now we save and read m. */ { java.io.File ff = new java.io.File("it.unimi.dsi.fastutil.test." + m.getClass().getSimpleName() + "." + n); java.io.OutputStream os = new java.io.FileOutputStream(ff); java.io.ObjectOutputStream oos = new java.io.ObjectOutputStream(os); oos.writeObject(m); oos.close(); java.io.InputStream is = new java.io.FileInputStream(ff); java.io.ObjectInputStream ois = new java.io.ObjectInputStream(is); m = (OPEN_HASH_SET)ois.readObject(); ois.close(); ff.delete(); } #if !KEYS_USE_REFERENCE_EQUALITY ensure(m.hashCode() == h, "Error (" + seed + "): hashCode() changed after save/read");; printProbes(m); /* Now we check that m actually holds that data, but iterating on m. */ for(java.util.Iterator i=m.iterator(); i.hasNext();) { Object e = i.next(); ensure(t.contains(e), "Error (" + seed + "): m and t differ on a key ("+e+") after save/read"); } #else m.clear(); m.addAll(t); #endif /* Now we put and remove random data in m and t, checking that the result is the same. */ for(int i=0; i<20*n; i++) { KEY_TYPE T = genKey(); ensure(m.add(KEY2OBJ(T)) == t.add(KEY2OBJ(T)), "Error (" + seed + "): divergence in add() between t and m after save/read"); T = genKey(); ensure(m.remove(KEY2OBJ(T)) == t.remove(KEY2OBJ(T)), "Error (" + seed + "): divergence in remove() between t and m after save/read"); } ensure(m.equals(t), "Error (" + seed + "): !m.equals(t) after post-save/read removal");; ensure(t.equals(m), "Error (" + seed + "): !t.equals(m) after post-save/read removal");; #ifdef Linked /* Now we play with iterators, but only in the linked case. */ { java.util.ListIterator i, j; Object I, J; i = (java.util.ListIterator)m.iterator(); j = new java.util.LinkedList(t).listIterator(); for(int k = 0; k < 2*n; k++) { ensure(i.hasNext() == j.hasNext(), "Error (" + seed + "): divergence in hasNext()"); ensure(i.hasPrevious() == j.hasPrevious(), "Error (" + seed + "): divergence in hasPrevious()"); if (r.nextFloat() < .8 && i.hasNext()) { #ifdef Custom ensure(m.strategy().equals(i.next(), J = j.next()), "Error (" + seed + "): divergence in next()"); #else ensure(i.next().equals(J = j.next()), "Error (" + seed + "): divergence in next()"); #endif if (r.nextFloat() < 0.5) { i.remove(); j.remove(); t.remove(J); } } else if (r.nextFloat() < .2 && i.hasPrevious()) { #ifdef Custom ensure(m.strategy().equals(i.previous(), J = j.previous()), "Error (" + seed + "): divergence in previous()"); #else ensure(i.previous().equals(J = j.previous()), "Error (" + seed + "): divergence in previous()"); #endif if (r.nextFloat() < 0.5) { i.remove(); j.remove(); t.remove(J); } } ensure(i.nextIndex() == j.nextIndex(), "Error (" + seed + "): divergence in nextIndex()"); ensure(i.previousIndex() == j.previousIndex(), "Error (" + seed + "): divergence in previousIndex()"); } } if (t.size() > 0) { java.util.ListIterator i, j; Object J; j = new java.util.LinkedList(t).listIterator(); int e = r.nextInt(t.size()); Object from; do from = j.next(); while(e-- != 0); i = (java.util.ListIterator)m.iterator(KEY_OBJ2TYPE(from)); for(int k = 0; k < 2*n; k++) { ensure(i.hasNext() == j.hasNext(), "Error (" + seed + "): divergence in hasNext() (iterator with starting point " + from + ")"); ensure(i.hasPrevious() == j.hasPrevious(), "Error (" + seed + "): divergence in hasPrevious() (iterator with starting point " + from + ")"); if (r.nextFloat() < .8 && i.hasNext()) { #ifdef Custom ensure(m.strategy().equals(i.next(), J = j.next()), "Error (" + seed + "): divergence in next() (iterator with starting point " + from + ")"); #else ensure(i.next().equals(J = j.next()), "Error (" + seed + "): divergence in next() (iterator with starting point " + from + ")"); #endif if (r.nextFloat() < 0.5) { i.remove(); j.remove(); t.remove(J); } } else if (r.nextFloat() < .2 && i.hasPrevious()) { #ifdef Custom ensure(m.strategy().equals(i.previous(), J = j.previous()), "Error (" + seed + "): divergence in previous() (iterator with starting point " + from + ")"); #else ensure(i.previous().equals(J = j.previous()), "Error (" + seed + "): divergence in previous() (iterator with starting point " + from + ")"); #endif if (r.nextFloat() < 0.5) { i.remove(); j.remove(); t.remove(J); } } ensure(i.nextIndex() == j.nextIndex(), "Error (" + seed + "): divergence in nextIndex() (iterator with starting point " + from + ")"); ensure(i.previousIndex() == j.previousIndex(), "Error (" + seed + "): divergence in previousIndex() (iterator with starting point " + from + ")"); } } /* Now we check that m actually holds that data. */ ensure(m.equals(t), "Error (" + seed + "): ! m.equals(t) after iteration"); ensure(t.equals(m), "Error (" + seed + "): ! t.equals(m) after iteration"); #endif /* Now we take out of m everything, and check that it is empty. */ for(java.util.Iterator i=m.iterator(); i.hasNext();) { i.next(); i.remove();} ensure(m.isEmpty(), "Error (" + seed + "): m is not empty (as it should be)"); #if KEY_CLASS_Integer || KEY_CLASS_Long m = new OPEN_HASH_SET(n, f); t.clear(); int x; /* Now we torture-test the hash table. This part is implemented only for integers and longs. */ int p = m.key.length - 1; for(int i=0; i2) f = Float.parseFloat(args[2]); if (args.length > 3) r = new java.util.Random(seed = Long.parseLong(args[3])); try { if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest(n, f, "speedComp".equals(args[0])); else if ("test".equals(args[0])) runTest(n, f); } catch(Throwable e) { e.printStackTrace(System.err); System.err.println("seed: " + seed); throw e; } } #endif }