All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.fastutil.ints.Int2DoubleRBTreeMap Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists, and queues with a small memory footprint and fast operations; it provides also big (64-bit) arrays, sets, and lists, sorting algorithms, fast, practical I/O classes for binary and text files, and facilities for memory mapping large files. This jar (fastutil-core.jar) contains data structures based on integers, longs, doubles, and objects, only; fastutil.jar contains all classes. If you have both jars in your dependencies, this jar should be excluded.

There is a newer version: 8.5.14
Show newest version
/*
	* Copyright (C) 2002-2023 Sebastiano Vigna
	*
	* Licensed under the Apache License, Version 2.0 (the "License");
	* you may not use this file except in compliance with the License.
	* You may obtain a copy of the License at
	*
	*     http://www.apache.org/licenses/LICENSE-2.0
	*
	* Unless required by applicable law or agreed to in writing, software
	* distributed under the License is distributed on an "AS IS" BASIS,
	* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
	* See the License for the specific language governing permissions and
	* limitations under the License.
	*/
package it.unimi.dsi.fastutil.ints;

import it.unimi.dsi.fastutil.objects.AbstractObjectSortedSet;
import it.unimi.dsi.fastutil.objects.ObjectBidirectionalIterator;
import it.unimi.dsi.fastutil.objects.ObjectListIterator;
import it.unimi.dsi.fastutil.objects.ObjectSortedSet;
import it.unimi.dsi.fastutil.doubles.DoubleCollection;
import it.unimi.dsi.fastutil.doubles.AbstractDoubleCollection;
import it.unimi.dsi.fastutil.doubles.DoubleIterator;
import it.unimi.dsi.fastutil.doubles.DoubleListIterator;
import java.util.Comparator;
import java.util.Iterator;
import java.util.Map;
import java.util.SortedMap;
import java.util.NoSuchElementException;

/**
 * A type-specific red-black tree map with a fast, small-footprint implementation.
 *
 * 

* The iterators provided by the views of this class are type-specific * {@linkplain it.unimi.dsi.fastutil.BidirectionalIterator bidirectional iterators}. Moreover, the * iterator returned by {@code iterator()} can be safely cast to a type-specific * {@linkplain java.util.ListIterator list iterator}. * */ public class Int2DoubleRBTreeMap extends AbstractInt2DoubleSortedMap implements java.io.Serializable, Cloneable { /** A reference to the root entry. */ protected transient Entry tree; /** Number of entries in this map. */ protected int count; /** The first key in this map. */ protected transient Entry firstEntry; /** The last key in this map. */ protected transient Entry lastEntry; /** Cached set of entries. */ protected transient ObjectSortedSet entries; /** Cached set of keys. */ protected transient IntSortedSet keys; /** Cached collection of values. */ protected transient DoubleCollection values; /** * The value of this variable remembers, after a {@code put()} or a {@code remove()}, whether the * domain of the map has been modified. */ protected transient boolean modified; /** This map's comparator, as provided in the constructor. */ protected Comparator storedComparator; /** * This map's actual comparator; it may differ from {@link #storedComparator} because it is always a * type-specific comparator, so it could be derived from the former by wrapping. */ protected transient IntComparator actualComparator; private static final long serialVersionUID = -7046029254386353129L; { allocatePaths(); } /** * Creates a new empty tree map. */ public Int2DoubleRBTreeMap() { tree = null; count = 0; } /** * Generates the comparator that will be actually used. * *

* When a given {@link Comparator} is specified and stored in {@link #storedComparator}, we must * check whether it is type-specific. If it is so, we can used directly, and we store it in * {@link #actualComparator}. Otherwise, we adapt it using a helper static method. */ private void setActualComparator() { actualComparator = IntComparators.asIntComparator(storedComparator); } /** * Creates a new empty tree map with the given comparator. * * @param c a (possibly type-specific) comparator. */ public Int2DoubleRBTreeMap(final Comparator c) { this(); storedComparator = c; setActualComparator(); } /** * Creates a new tree map copying a given map. * * @param m a {@link Map} to be copied into the new tree map. */ public Int2DoubleRBTreeMap(final Map m) { this(); putAll(m); } /** * Creates a new tree map copying a given sorted map (and its {@link Comparator}). * * @param m a {@link SortedMap} to be copied into the new tree map. */ public Int2DoubleRBTreeMap(final SortedMap m) { this(m.comparator()); putAll(m); } /** * Creates a new tree map copying a given map. * * @param m a type-specific map to be copied into the new tree map. */ public Int2DoubleRBTreeMap(final Int2DoubleMap m) { this(); putAll(m); } /** * Creates a new tree map copying a given sorted map (and its {@link Comparator}). * * @param m a type-specific sorted map to be copied into the new tree map. */ public Int2DoubleRBTreeMap(final Int2DoubleSortedMap m) { this(m.comparator()); putAll(m); } /** * Creates a new tree map using the elements of two parallel arrays and the given comparator. * * @param k the array of keys of the new tree map. * @param v the array of corresponding values in the new tree map. * @param c a (possibly type-specific) comparator. * @throws IllegalArgumentException if {@code k} and {@code v} have different lengths. */ public Int2DoubleRBTreeMap(final int[] k, final double v[], final Comparator c) { this(c); if (k.length != v.length) throw new IllegalArgumentException("The key array and the value array have different lengths (" + k.length + " and " + v.length + ")"); for (int i = 0; i < k.length; i++) this.put(k[i], v[i]); } /** * Creates a new tree map using the elements of two parallel arrays. * * @param k the array of keys of the new tree map. * @param v the array of corresponding values in the new tree map. * @throws IllegalArgumentException if {@code k} and {@code v} have different lengths. */ public Int2DoubleRBTreeMap(final int[] k, final double v[]) { this(k, v, null); } /* * The following methods implements some basic building blocks used by * all accessors. They are (and should be maintained) identical to those used in RBTreeSet.drv. * * The put()/remove() code is derived from Ben Pfaff's GNU libavl * (https://adtinfo.org/). If you want to understand what's * going on, you should have a look at the literate code contained therein * first. */ /** * Compares two keys in the right way. * *

* This method uses the {@link #actualComparator} if it is non-{@code null}. Otherwise, it resorts * to primitive type comparisons or to {@link Comparable#compareTo(Object) compareTo()}. * * @param k1 the first key. * @param k2 the second key. * @return a number smaller than, equal to or greater than 0, as usual (i.e., when k1 < k2, k1 = * k2 or k1 > k2, respectively). */ final int compare(final int k1, final int k2) { return actualComparator == null ? (Integer.compare((k1), (k2))) : actualComparator.compare(k1, k2); } /** * Returns the entry corresponding to the given key, if it is in the tree; {@code null}, otherwise. * * @param k the key to search for. * @return the corresponding entry, or {@code null} if no entry with the given key exists. */ final Entry findKey(final int k) { Entry e = tree; int cmp; while (e != null && (cmp = compare(k, e.key)) != 0) e = cmp < 0 ? e.left() : e.right(); return e; } /** * Locates a key. * * @param k a key. * @return the last entry on a search for the given key; this will be the given key, if it present; * otherwise, it will be either the smallest greater key or the greatest smaller key. */ final Entry locateKey(final int k) { Entry e = tree, last = tree; int cmp = 0; while (e != null && (cmp = compare(k, e.key)) != 0) { last = e; e = cmp < 0 ? e.left() : e.right(); } return cmp == 0 ? e : last; } /** * This vector remembers the path and the direction followed during the current insertion. It * suffices for about 232 entries. */ private transient boolean dirPath[]; private transient Entry nodePath[]; private void allocatePaths() { dirPath = new boolean[64]; nodePath = new Entry[64]; } /** * Adds an increment to value currently associated with a key. * *

* Note that this method respects the {@linkplain #defaultReturnValue() default return value} * semantics: when called with a key that does not currently appears in the map, the key will be * associated with the default return value plus the given increment. * * @param k the key. * @param incr the increment. * @return the old value, or the {@linkplain #defaultReturnValue() default return value} if no value * was present for the given key. */ public double addTo(final int k, final double incr) { Entry e = add(k); final double oldValue = e.value; e.value += incr; return oldValue; } @Override public double put(final int k, final double v) { Entry e = add(k); final double oldValue = e.value; e.value = v; return oldValue; } /** * Returns a node with key k in the balanced tree, creating one with defRetValue if necessary. * * @param k the key * @return a node with key k. If a node with key k already exists, then that node is returned, * otherwise a new node with defRetValue is created ensuring that the tree is balanced after * creation of the node. */ private Entry add(final int k) { /* After execution of this method, modified is true iff a new entry has been inserted. */ modified = false; int maxDepth = 0; Entry e; if (tree == null) { // The case of the empty tree is treated separately. count++; e = tree = lastEntry = firstEntry = new Entry(k, defRetValue); } else { Entry p = tree; int cmp, i = 0; while (true) { if ((cmp = compare(k, p.key)) == 0) { // We clean up the node path, or we could have stale references later. while (i-- != 0) nodePath[i] = null; return p; } nodePath[i] = p; if (dirPath[i++] = cmp > 0) { if (p.succ()) { count++; e = new Entry(k, defRetValue); if (p.right == null) lastEntry = e; e.left = p; e.right = p.right; p.right(e); break; } p = p.right; } else { if (p.pred()) { count++; e = new Entry(k, defRetValue); if (p.left == null) firstEntry = e; e.right = p; e.left = p.left; p.left(e); break; } p = p.left; } } modified = true; maxDepth = i--; while (i > 0 && !nodePath[i].black()) { if (!dirPath[i - 1]) { Entry y = nodePath[i - 1].right; if (!nodePath[i - 1].succ() && !y.black()) { nodePath[i].black(true); y.black(true); nodePath[i - 1].black(false); i -= 2; } else { Entry x; if (!dirPath[i]) y = nodePath[i]; else { x = nodePath[i]; y = x.right; x.right = y.left; y.left = x; nodePath[i - 1].left = y; if (y.pred()) { y.pred(false); x.succ(y); } } x = nodePath[i - 1]; x.black(false); y.black(true); x.left = y.right; y.right = x; if (i < 2) tree = y; else { if (dirPath[i - 2]) nodePath[i - 2].right = y; else nodePath[i - 2].left = y; } if (y.succ()) { y.succ(false); x.pred(y); } break; } } else { Entry y = nodePath[i - 1].left; if (!nodePath[i - 1].pred() && !y.black()) { nodePath[i].black(true); y.black(true); nodePath[i - 1].black(false); i -= 2; } else { Entry x; if (dirPath[i]) y = nodePath[i]; else { x = nodePath[i]; y = x.left; x.left = y.right; y.right = x; nodePath[i - 1].right = y; if (y.succ()) { y.succ(false); x.pred(y); } } x = nodePath[i - 1]; x.black(false); y.black(true); x.right = y.left; y.left = x; if (i < 2) tree = y; else { if (dirPath[i - 2]) nodePath[i - 2].right = y; else nodePath[i - 2].left = y; } if (y.pred()) { y.pred(false); x.succ(y); } break; } } } } tree.black(true); // We clean up the node path, or we could have stale references later. while (maxDepth-- != 0) nodePath[maxDepth] = null; return e; } /* After execution of this method, {@link #modified} is true iff an entry has been deleted. */ @Override public double remove(final int k) { modified = false; if (tree == null) return defRetValue; Entry p = tree; int cmp; int i = 0; final int kk = k; while (true) { if ((cmp = compare(kk, p.key)) == 0) break; dirPath[i] = cmp > 0; nodePath[i] = p; if (dirPath[i++]) { if ((p = p.right()) == null) { // We clean up the node path, or we could have stale references later. while (i-- != 0) nodePath[i] = null; return defRetValue; } } else { if ((p = p.left()) == null) { // We clean up the node path, or we could have stale references later. while (i-- != 0) nodePath[i] = null; return defRetValue; } } } if (p.left == null) firstEntry = p.next(); if (p.right == null) lastEntry = p.prev(); if (p.succ()) { if (p.pred()) { if (i == 0) tree = p.left; else { if (dirPath[i - 1]) nodePath[i - 1].succ(p.right); else nodePath[i - 1].pred(p.left); } } else { p.prev().right = p.right; if (i == 0) tree = p.left; else { if (dirPath[i - 1]) nodePath[i - 1].right = p.left; else nodePath[i - 1].left = p.left; } } } else { boolean color; Entry r = p.right; if (r.pred()) { r.left = p.left; r.pred(p.pred()); if (!r.pred()) r.prev().right = r; if (i == 0) tree = r; else { if (dirPath[i - 1]) nodePath[i - 1].right = r; else nodePath[i - 1].left = r; } color = r.black(); r.black(p.black()); p.black(color); dirPath[i] = true; nodePath[i++] = r; } else { Entry s; int j = i++; while (true) { dirPath[i] = false; nodePath[i++] = r; s = r.left; if (s.pred()) break; r = s; } dirPath[j] = true; nodePath[j] = s; if (s.succ()) r.pred(s); else r.left = s.right; s.left = p.left; if (!p.pred()) { p.prev().right = s; s.pred(false); } s.right(p.right); color = s.black(); s.black(p.black()); p.black(color); if (j == 0) tree = s; else { if (dirPath[j - 1]) nodePath[j - 1].right = s; else nodePath[j - 1].left = s; } } } int maxDepth = i; if (p.black()) { for (; i > 0; i--) { if (dirPath[i - 1] && !nodePath[i - 1].succ() || !dirPath[i - 1] && !nodePath[i - 1].pred()) { Entry x = dirPath[i - 1] ? nodePath[i - 1].right : nodePath[i - 1].left; if (!x.black()) { x.black(true); break; } } if (!dirPath[i - 1]) { Entry w = nodePath[i - 1].right; if (!w.black()) { w.black(true); nodePath[i - 1].black(false); nodePath[i - 1].right = w.left; w.left = nodePath[i - 1]; if (i < 2) tree = w; else { if (dirPath[i - 2]) nodePath[i - 2].right = w; else nodePath[i - 2].left = w; } nodePath[i] = nodePath[i - 1]; dirPath[i] = false; nodePath[i - 1] = w; if (maxDepth == i++) maxDepth++; w = nodePath[i - 1].right; } if ((w.pred() || w.left.black()) && (w.succ() || w.right.black())) { w.black(false); } else { if (w.succ() || w.right.black()) { Entry y = w.left; y.black(true); w.black(false); w.left = y.right; y.right = w; w = nodePath[i - 1].right = y; if (w.succ()) { w.succ(false); w.right.pred(w); } } w.black(nodePath[i - 1].black()); nodePath[i - 1].black(true); w.right.black(true); nodePath[i - 1].right = w.left; w.left = nodePath[i - 1]; if (i < 2) tree = w; else { if (dirPath[i - 2]) nodePath[i - 2].right = w; else nodePath[i - 2].left = w; } if (w.pred()) { w.pred(false); nodePath[i - 1].succ(w); } break; } } else { Entry w = nodePath[i - 1].left; if (!w.black()) { w.black(true); nodePath[i - 1].black(false); nodePath[i - 1].left = w.right; w.right = nodePath[i - 1]; if (i < 2) tree = w; else { if (dirPath[i - 2]) nodePath[i - 2].right = w; else nodePath[i - 2].left = w; } nodePath[i] = nodePath[i - 1]; dirPath[i] = true; nodePath[i - 1] = w; if (maxDepth == i++) maxDepth++; w = nodePath[i - 1].left; } if ((w.pred() || w.left.black()) && (w.succ() || w.right.black())) { w.black(false); } else { if (w.pred() || w.left.black()) { Entry y = w.right; y.black(true); w.black(false); w.right = y.left; y.left = w; w = nodePath[i - 1].left = y; if (w.pred()) { w.pred(false); w.left.succ(w); } } w.black(nodePath[i - 1].black()); nodePath[i - 1].black(true); w.left.black(true); nodePath[i - 1].left = w.right; w.right = nodePath[i - 1]; if (i < 2) tree = w; else { if (dirPath[i - 2]) nodePath[i - 2].right = w; else nodePath[i - 2].left = w; } if (w.succ()) { w.succ(false); nodePath[i - 1].pred(w); } break; } } } if (tree != null) tree.black(true); } modified = true; count--; // We clean up the node path, or we could have stale references later. while (maxDepth-- != 0) nodePath[maxDepth] = null; return p.value; } @Override public boolean containsValue(final double v) { final ValueIterator i = new ValueIterator(); double ev; int j = count; while (j-- != 0) { ev = i.nextDouble(); if ((Double.doubleToLongBits(ev) == Double.doubleToLongBits(v))) return true; } return false; } @Override public void clear() { count = 0; tree = null; entries = null; values = null; keys = null; firstEntry = lastEntry = null; } /** * This class represent an entry in a tree map. * *

* We use the only "metadata", i.e., {@link Entry#info}, to store information about color, * predecessor status and successor status. * *

* Note that since the class is recursive, it can be considered equivalently a tree. */ private static final class Entry extends AbstractInt2DoubleMap.BasicEntry implements Cloneable { /** The the bit in this mask is true, the node is black. */ private static final int BLACK_MASK = 1; /** If the bit in this mask is true, {@link #right} points to a successor. */ private static final int SUCC_MASK = 1 << 31; /** If the bit in this mask is true, {@link #left} points to a predecessor. */ private static final int PRED_MASK = 1 << 30; /** The pointers to the left and right subtrees. */ Entry left, right; /** * This integers holds different information in different bits (see {@link #SUCC_MASK} and * {@link #PRED_MASK}. */ int info; Entry() { super((0), (0)); } /** * Creates a new entry with the given key and value. * * @param k a key. * @param v a value. */ Entry(final int k, final double v) { super(k, v); info = SUCC_MASK | PRED_MASK; } /** * Returns the left subtree. * * @return the left subtree ({@code null} if the left subtree is empty). */ Entry left() { return (info & PRED_MASK) != 0 ? null : left; } /** * Returns the right subtree. * * @return the right subtree ({@code null} if the right subtree is empty). */ Entry right() { return (info & SUCC_MASK) != 0 ? null : right; } /** * Checks whether the left pointer is really a predecessor. * * @return true if the left pointer is a predecessor. */ boolean pred() { return (info & PRED_MASK) != 0; } /** * Checks whether the right pointer is really a successor. * * @return true if the right pointer is a successor. */ boolean succ() { return (info & SUCC_MASK) != 0; } /** * Sets whether the left pointer is really a predecessor. * * @param pred if true then the left pointer will be considered a predecessor. */ void pred(final boolean pred) { if (pred) info |= PRED_MASK; else info &= ~PRED_MASK; } /** * Sets whether the right pointer is really a successor. * * @param succ if true then the right pointer will be considered a successor. */ void succ(final boolean succ) { if (succ) info |= SUCC_MASK; else info &= ~SUCC_MASK; } /** * Sets the left pointer to a predecessor. * * @param pred the predecessr. */ void pred(final Entry pred) { info |= PRED_MASK; left = pred; } /** * Sets the right pointer to a successor. * * @param succ the successor. */ void succ(final Entry succ) { info |= SUCC_MASK; right = succ; } /** * Sets the left pointer to the given subtree. * * @param left the new left subtree. */ void left(final Entry left) { info &= ~PRED_MASK; this.left = left; } /** * Sets the right pointer to the given subtree. * * @param right the new right subtree. */ void right(final Entry right) { info &= ~SUCC_MASK; this.right = right; } /** * Returns whether this node is black. * * @return true iff this node is black. */ boolean black() { return (info & BLACK_MASK) != 0; } /** * Sets whether this node is black. * * @param black if true, then this node becomes black; otherwise, it becomes red.. */ void black(final boolean black) { if (black) info |= BLACK_MASK; else info &= ~BLACK_MASK; } /** * Computes the next entry in the set order. * * @return the next entry ({@code null}) if this is the last entry). */ Entry next() { Entry next = this.right; if ((info & SUCC_MASK) == 0) while ((next.info & PRED_MASK) == 0) next = next.left; return next; } /** * Computes the previous entry in the set order. * * @return the previous entry ({@code null}) if this is the first entry). */ Entry prev() { Entry prev = this.left; if ((info & PRED_MASK) == 0) while ((prev.info & SUCC_MASK) == 0) prev = prev.right; return prev; } @Override public double setValue(final double value) { final double oldValue = this.value; this.value = value; return oldValue; } @Override public Entry clone() { Entry c; try { c = (Entry)super.clone(); } catch (CloneNotSupportedException cantHappen) { throw new InternalError(); } c.key = key; c.value = value; c.info = info; return c; } @Override @SuppressWarnings("unchecked") public boolean equals(final Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; return ((key) == ((e.getKey()).intValue())) && (Double.doubleToLongBits(value) == Double.doubleToLongBits((e.getValue()).doubleValue())); } @Override public int hashCode() { return (key) ^ it.unimi.dsi.fastutil.HashCommon.double2int(value); } @Override public String toString() { return key + "=>" + value; } /* public void prettyPrint() { prettyPrint(0); } public void prettyPrint(int level) { if (pred()) { for (int i = 0; i < level; i++) System.err.print(" "); System.err.println("pred: " + left); } else if (left != null) left.prettyPrint(level +1); for (int i = 0; i < level; i++) System.err.print(" "); System.err.println(key + "=" + value + " (" + balance() + ")"); if (succ()) { for (int i = 0; i < level; i++) System.err.print(" "); System.err.println("succ: " + right); } else if (right != null) right.prettyPrint(level + 1); }*/ } /* public void prettyPrint() { System.err.println("size: " + count); if (tree != null) tree.prettyPrint(); }*/ @Override public boolean containsKey(final int k) { return findKey(k) != null; } @Override public int size() { return count; } @Override public boolean isEmpty() { return count == 0; } @Override public double get(final int k) { final Entry e = findKey(k); return e == null ? defRetValue : e.value; } @Override public int firstIntKey() { if (tree == null) throw new NoSuchElementException(); return firstEntry.key; } @Override public int lastIntKey() { if (tree == null) throw new NoSuchElementException(); return lastEntry.key; } /** * An abstract iterator on the whole range. * *

* This class can iterate in both directions on a threaded tree. */ private class TreeIterator { /** * The entry that will be returned by the next call to {@link java.util.ListIterator#previous()} (or * {@code null} if no previous entry exists). */ Entry prev; /** * The entry that will be returned by the next call to {@link java.util.ListIterator#next()} (or * {@code null} if no next entry exists). */ Entry next; /** * The last entry that was returned (or {@code null} if we did not iterate or used * {@link #remove()}). */ Entry curr; /** * The current index (in the sense of a {@link java.util.ListIterator}). Note that this value is not * meaningful when this {@link TreeIterator} has been created using the nonempty constructor. */ int index = 0; TreeIterator() { next = firstEntry; } TreeIterator(final int k) { if ((next = locateKey(k)) != null) { if (compare(next.key, k) <= 0) { prev = next; next = next.next(); } else prev = next.prev(); } } public boolean hasNext() { return next != null; } public boolean hasPrevious() { return prev != null; } void updateNext() { next = next.next(); } Entry nextEntry() { if (!hasNext()) throw new NoSuchElementException(); curr = prev = next; index++; updateNext(); return curr; } void updatePrevious() { prev = prev.prev(); } Entry previousEntry() { if (!hasPrevious()) throw new NoSuchElementException(); curr = next = prev; index--; updatePrevious(); return curr; } public int nextIndex() { return index; } public int previousIndex() { return index - 1; } public void remove() { if (curr == null) throw new IllegalStateException(); /* If the last operation was a next(), we are removing an entry that preceeds the current index, and thus we must decrement it. */ if (curr == prev) index--; next = prev = curr; updatePrevious(); updateNext(); Int2DoubleRBTreeMap.this.remove(curr.key); curr = null; } public int skip(final int n) { int i = n; while (i-- != 0 && hasNext()) nextEntry(); return n - i - 1; } public int back(final int n) { int i = n; while (i-- != 0 && hasPrevious()) previousEntry(); return n - i - 1; } } /** * An iterator on the whole range. * *

* This class can iterate in both directions on a threaded tree. */ private class EntryIterator extends TreeIterator implements ObjectListIterator { EntryIterator() { } EntryIterator(final int k) { super(k); } @Override public Int2DoubleMap.Entry next() { return nextEntry(); } @Override public Int2DoubleMap.Entry previous() { return previousEntry(); } } @Override public ObjectSortedSet int2DoubleEntrySet() { if (entries == null) entries = new AbstractObjectSortedSet() { final Comparator comparator = (Int2DoubleRBTreeMap.this.actualComparator == null ? (Comparator)(x, y) -> (Integer.compare((x.getIntKey()), (y.getIntKey()))) : (Comparator)(x, y) -> Int2DoubleRBTreeMap.this.actualComparator.compare(x.getIntKey(), y.getIntKey())); @Override public Comparator comparator() { return comparator; } @Override public ObjectBidirectionalIterator iterator() { return new EntryIterator(); } @Override public ObjectBidirectionalIterator iterator(final Int2DoubleMap.Entry from) { return new EntryIterator(from.getIntKey()); } @Override public boolean contains(final Object o) { if (o == null || !(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry)o; if (e.getKey() == null) return false; if (!(e.getKey() instanceof Integer)) return false; if (e.getValue() == null || !(e.getValue() instanceof Double)) return false; final Entry f = findKey(((Integer)(e.getKey())).intValue()); return e.equals(f); } @Override public boolean remove(final Object o) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry)o; if (e.getKey() == null) return false; if (!(e.getKey() instanceof Integer)) return false; if (e.getValue() == null || !(e.getValue() instanceof Double)) return false; final Entry f = findKey(((Integer)(e.getKey())).intValue()); if (f == null || !(Double.doubleToLongBits(f.getDoubleValue()) == Double.doubleToLongBits(((Double)(e.getValue())).doubleValue()))) return false; Int2DoubleRBTreeMap.this.remove(f.key); return true; } @Override public int size() { return count; } @Override public void clear() { Int2DoubleRBTreeMap.this.clear(); } @Override public Int2DoubleMap.Entry first() { return firstEntry; } @Override public Int2DoubleMap.Entry last() { return lastEntry; } @Override public ObjectSortedSet subSet(Int2DoubleMap.Entry from, Int2DoubleMap.Entry to) { return subMap(from.getIntKey(), to.getIntKey()).int2DoubleEntrySet(); } @Override public ObjectSortedSet headSet(Int2DoubleMap.Entry to) { return headMap(to.getIntKey()).int2DoubleEntrySet(); } @Override public ObjectSortedSet tailSet(Int2DoubleMap.Entry from) { return tailMap(from.getIntKey()).int2DoubleEntrySet(); } }; return entries; } /** * An iterator on the whole range of keys. * *

* This class can iterate in both directions on the keys of a threaded tree. We simply override the * {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and * possibly their type-specific counterparts) so that they return keys instead of entries. */ private final class KeyIterator extends TreeIterator implements IntListIterator { public KeyIterator() { } public KeyIterator(final int k) { super(k); } @Override public int nextInt() { return nextEntry().key; } @Override public int previousInt() { return previousEntry().key; } }; /** A keyset implementation using a more direct implementation for iterators. */ private class KeySet extends AbstractInt2DoubleSortedMap.KeySet { @Override public IntBidirectionalIterator iterator() { return new KeyIterator(); } @Override public IntBidirectionalIterator iterator(final int from) { return new KeyIterator(from); } } /** * Returns a type-specific sorted set view of the keys contained in this map. * *

* In addition to the semantics of {@link java.util.Map#keySet()}, you can safely cast the set * returned by this call to a type-specific sorted set interface. * * @return a type-specific sorted set view of the keys contained in this map. */ @Override public IntSortedSet keySet() { if (keys == null) keys = new KeySet(); return keys; } /** * An iterator on the whole range of values. * *

* This class can iterate in both directions on the values of a threaded tree. We simply override * the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and * possibly their type-specific counterparts) so that they return values instead of entries. */ private final class ValueIterator extends TreeIterator implements DoubleListIterator { @Override public double nextDouble() { return nextEntry().value; } @Override public double previousDouble() { return previousEntry().value; } }; /** * Returns a type-specific collection view of the values contained in this map. * *

* In addition to the semantics of {@link java.util.Map#values()}, you can safely cast the * collection returned by this call to a type-specific collection interface. * * @return a type-specific collection view of the values contained in this map. */ @Override public DoubleCollection values() { if (values == null) values = new AbstractDoubleCollection() { @Override public DoubleIterator iterator() { return new ValueIterator(); } @Override public boolean contains(final double k) { return containsValue(k); } @Override public int size() { return count; } @Override public void clear() { Int2DoubleRBTreeMap.this.clear(); } }; return values; } @Override public IntComparator comparator() { return actualComparator; } @Override public Int2DoubleSortedMap headMap(int to) { return new Submap((0), true, to, false); } @Override public Int2DoubleSortedMap tailMap(int from) { return new Submap(from, false, (0), true); } @Override public Int2DoubleSortedMap subMap(int from, int to) { return new Submap(from, false, to, false); } /** * A submap with given range. * *

* This class represents a submap. One has to specify the left/right limits (which can be set to * -∞ or ∞). Since the submap is a view on the map, at a given moment it could happen * that the limits of the range are not any longer in the main map. Thus, things such as * {@link java.util.SortedMap#firstKey()} or {@link java.util.Collection#size()} must be always * computed on-the-fly. */ private final class Submap extends AbstractInt2DoubleSortedMap implements java.io.Serializable { private static final long serialVersionUID = -7046029254386353129L; /** The start of the submap range, unless {@link #bottom} is true. */ int from; /** The end of the submap range, unless {@link #top} is true. */ int to; /** If true, the submap range starts from -∞. */ boolean bottom; /** If true, the submap range goes to ∞. */ boolean top; /** Cached set of entries. */ protected transient ObjectSortedSet entries; /** Cached set of keys. */ protected transient IntSortedSet keys; /** Cached collection of values. */ protected transient DoubleCollection values; /** * Creates a new submap with given key range. * * @param from the start of the submap range. * @param bottom if true, the first parameter is ignored and the range starts from -∞. * @param to the end of the submap range. * @param top if true, the third parameter is ignored and the range goes to ∞. */ public Submap(final int from, final boolean bottom, final int to, final boolean top) { if (!bottom && !top && Int2DoubleRBTreeMap.this.compare(from, to) > 0) throw new IllegalArgumentException("Start key (" + from + ") is larger than end key (" + to + ")"); this.from = from; this.bottom = bottom; this.to = to; this.top = top; this.defRetValue = Int2DoubleRBTreeMap.this.defRetValue; } @Override public void clear() { final SubmapIterator i = new SubmapIterator(); while (i.hasNext()) { i.nextEntry(); i.remove(); } } /** * Checks whether a key is in the submap range. * * @param k a key. * @return true if is the key is in the submap range. */ final boolean in(final int k) { return (bottom || Int2DoubleRBTreeMap.this.compare(k, from) >= 0) && (top || Int2DoubleRBTreeMap.this.compare(k, to) < 0); } @Override public ObjectSortedSet int2DoubleEntrySet() { if (entries == null) entries = new AbstractObjectSortedSet() { @Override public ObjectBidirectionalIterator iterator() { return new SubmapEntryIterator(); } @Override public ObjectBidirectionalIterator iterator(final Int2DoubleMap.Entry from) { return new SubmapEntryIterator(from.getIntKey()); } @Override public Comparator comparator() { return Int2DoubleRBTreeMap.this.int2DoubleEntrySet().comparator(); } @Override public boolean contains(final Object o) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry)o; if (e.getKey() == null || !(e.getKey() instanceof Integer)) return false; if (e.getValue() == null || !(e.getValue() instanceof Double)) return false; final Int2DoubleRBTreeMap.Entry f = findKey(((Integer)(e.getKey())).intValue()); return f != null && in(f.key) && e.equals(f); } @Override public boolean remove(final Object o) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry)o; if (e.getKey() == null || !(e.getKey() instanceof Integer)) return false; if (e.getValue() == null || !(e.getValue() instanceof Double)) return false; final Int2DoubleRBTreeMap.Entry f = findKey(((Integer)(e.getKey())).intValue()); if (f != null && in(f.key)) Submap.this.remove(f.key); return f != null; } @Override public int size() { int c = 0; for (Iterator i = iterator(); i.hasNext(); i.next()) c++; return c; } @Override public boolean isEmpty() { return !new SubmapIterator().hasNext(); } @Override public void clear() { Submap.this.clear(); } @Override public Int2DoubleMap.Entry first() { return firstEntry(); } @Override public Int2DoubleMap.Entry last() { return lastEntry(); } @Override public ObjectSortedSet subSet(Int2DoubleMap.Entry from, Int2DoubleMap.Entry to) { return subMap(from.getIntKey(), to.getIntKey()).int2DoubleEntrySet(); } @Override public ObjectSortedSet headSet(Int2DoubleMap.Entry to) { return headMap(to.getIntKey()).int2DoubleEntrySet(); } @Override public ObjectSortedSet tailSet(Int2DoubleMap.Entry from) { return tailMap(from.getIntKey()).int2DoubleEntrySet(); } }; return entries; } private class KeySet extends AbstractInt2DoubleSortedMap.KeySet { @Override public IntBidirectionalIterator iterator() { return new SubmapKeyIterator(); } @Override public IntBidirectionalIterator iterator(final int from) { return new SubmapKeyIterator(from); } } @Override public IntSortedSet keySet() { if (keys == null) keys = new KeySet(); return keys; } @Override public DoubleCollection values() { if (values == null) values = new AbstractDoubleCollection() { @Override public DoubleIterator iterator() { return new SubmapValueIterator(); } @Override public boolean contains(final double k) { return containsValue(k); } @Override public int size() { return Submap.this.size(); } @Override public void clear() { Submap.this.clear(); } }; return values; } @Override public boolean containsKey(final int k) { return in(k) && Int2DoubleRBTreeMap.this.containsKey(k); } @Override public boolean containsValue(final double v) { final SubmapIterator i = new SubmapIterator(); double ev; while (i.hasNext()) { ev = i.nextEntry().value; if ((Double.doubleToLongBits(ev) == Double.doubleToLongBits(v))) return true; } return false; } @Override public double get(final int k) { final Int2DoubleRBTreeMap.Entry e; final int kk = k; return in(kk) && (e = findKey(kk)) != null ? e.value : this.defRetValue; } @Override public double put(final int k, final double v) { modified = false; if (!in(k)) throw new IllegalArgumentException("Key (" + k + ") out of range [" + (bottom ? "-" : String.valueOf(from)) + ", " + (top ? "-" : String.valueOf(to)) + ")"); final double oldValue = Int2DoubleRBTreeMap.this.put(k, v); return modified ? this.defRetValue : oldValue; } @Override public double remove(final int k) { modified = false; if (!in(k)) return this.defRetValue; final double oldValue = Int2DoubleRBTreeMap.this.remove(k); return modified ? oldValue : this.defRetValue; } @Override public int size() { final SubmapIterator i = new SubmapIterator(); int n = 0; while (i.hasNext()) { n++; i.nextEntry(); } return n; } @Override public boolean isEmpty() { return !new SubmapIterator().hasNext(); } @Override public IntComparator comparator() { return actualComparator; } @Override public Int2DoubleSortedMap headMap(final int to) { if (top) return new Submap(from, bottom, to, false); return compare(to, this.to) < 0 ? new Submap(from, bottom, to, false) : this; } @Override public Int2DoubleSortedMap tailMap(final int from) { if (bottom) return new Submap(from, false, to, top); return compare(from, this.from) > 0 ? new Submap(from, false, to, top) : this; } @Override public Int2DoubleSortedMap subMap(int from, int to) { if (top && bottom) return new Submap(from, false, to, false); if (!top) to = compare(to, this.to) < 0 ? to : this.to; if (!bottom) from = compare(from, this.from) > 0 ? from : this.from; if (!top && !bottom && from == this.from && to == this.to) return this; return new Submap(from, false, to, false); } /** * Locates the first entry. * * @return the first entry of this submap, or {@code null} if the submap is empty. */ public Int2DoubleRBTreeMap.Entry firstEntry() { if (tree == null) return null; // If this submap goes to -infinity, we return the main map first entry; otherwise, we locate the // start of the map. Int2DoubleRBTreeMap.Entry e; if (bottom) e = firstEntry; else { e = locateKey(from); // If we find either the start or something greater we're OK. if (compare(e.key, from) < 0) e = e.next(); } // Finally, if this submap doesn't go to infinity, we check that the resulting key isn't greater // than the end. if (e == null || !top && compare(e.key, to) >= 0) return null; return e; } /** * Locates the last entry. * * @return the last entry of this submap, or {@code null} if the submap is empty. */ public Int2DoubleRBTreeMap.Entry lastEntry() { if (tree == null) return null; // If this submap goes to infinity, we return the main map last entry; otherwise, we locate the end // of the map. Int2DoubleRBTreeMap.Entry e; if (top) e = lastEntry; else { e = locateKey(to); // If we find something smaller than the end we're OK. if (compare(e.key, to) >= 0) e = e.prev(); } // Finally, if this submap doesn't go to -infinity, we check that the resulting key isn't smaller // than the start. if (e == null || !bottom && compare(e.key, from) < 0) return null; return e; } @Override public int firstIntKey() { Int2DoubleRBTreeMap.Entry e = firstEntry(); if (e == null) throw new NoSuchElementException(); return e.key; } @Override public int lastIntKey() { Int2DoubleRBTreeMap.Entry e = lastEntry(); if (e == null) throw new NoSuchElementException(); return e.key; } /** * An iterator for subranges. * *

* This class inherits from {@link TreeIterator}, but overrides the methods that update the pointer * after a {@link java.util.ListIterator#next()} or {@link java.util.ListIterator#previous()}. If we * would move out of the range of the submap we just overwrite the next or previous entry with * {@code null}. */ private class SubmapIterator extends TreeIterator { SubmapIterator() { next = firstEntry(); } SubmapIterator(final int k) { this(); if (next != null) { if (!bottom && compare(k, next.key) < 0) prev = null; else if (!top && compare(k, (prev = lastEntry()).key) >= 0) next = null; else { next = locateKey(k); if (compare(next.key, k) <= 0) { prev = next; next = next.next(); } else prev = next.prev(); } } } @Override void updatePrevious() { prev = prev.prev(); if (!bottom && prev != null && Int2DoubleRBTreeMap.this.compare(prev.key, from) < 0) prev = null; } @Override void updateNext() { next = next.next(); if (!top && next != null && Int2DoubleRBTreeMap.this.compare(next.key, to) >= 0) next = null; } } private class SubmapEntryIterator extends SubmapIterator implements ObjectListIterator { SubmapEntryIterator() { } SubmapEntryIterator(final int k) { super(k); } @Override public Int2DoubleMap.Entry next() { return nextEntry(); } @Override public Int2DoubleMap.Entry previous() { return previousEntry(); } } /** * An iterator on a subrange of keys. * *

* This class can iterate in both directions on a subrange of the keys of a threaded tree. We simply * override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} * methods (and possibly their type-specific counterparts) so that they return keys instead of * entries. */ private final class SubmapKeyIterator extends SubmapIterator implements IntListIterator { public SubmapKeyIterator() { super(); } public SubmapKeyIterator(int from) { super(from); } @Override public int nextInt() { return nextEntry().key; } @Override public int previousInt() { return previousEntry().key; } }; /** * An iterator on a subrange of values. * *

* This class can iterate in both directions on the values of a subrange of the keys of a threaded * tree. We simply override the * {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and * possibly their type-specific counterparts) so that they return values instead of entries. */ private final class SubmapValueIterator extends SubmapIterator implements DoubleListIterator { @Override public double nextDouble() { return nextEntry().value; } @Override public double previousDouble() { return previousEntry().value; } }; } /** * Returns a deep copy of this tree map. * *

* This method performs a deep copy of this tree map; the data stored in the set, however, is not * cloned. Note that this makes a difference only for object keys. * * @return a deep copy of this tree map. */ @Override public Int2DoubleRBTreeMap clone() { Int2DoubleRBTreeMap c; try { c = (Int2DoubleRBTreeMap)super.clone(); } catch (CloneNotSupportedException cantHappen) { throw new InternalError(); } c.keys = null; c.values = null; c.entries = null; c.allocatePaths(); if (count != 0) { // Also this apparently unfathomable code is derived from GNU libavl. Entry e, p, q, rp = new Entry(), rq = new Entry(); p = rp; rp.left(tree); q = rq; rq.pred(null); while (true) { if (!p.pred()) { e = p.left.clone(); e.pred(q.left); e.succ(q); q.left(e); p = p.left; q = q.left; } else { while (p.succ()) { p = p.right; if (p == null) { q.right = null; c.tree = rq.left; c.firstEntry = c.tree; while (c.firstEntry.left != null) c.firstEntry = c.firstEntry.left; c.lastEntry = c.tree; while (c.lastEntry.right != null) c.lastEntry = c.lastEntry.right; return c; } q = q.right; } p = p.right; q = q.right; } if (!p.succ()) { e = p.right.clone(); e.succ(q.right); e.pred(q); q.right(e); } } } return c; } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { int n = count; EntryIterator i = new EntryIterator(); Entry e; s.defaultWriteObject(); while (n-- != 0) { e = i.nextEntry(); s.writeInt(e.key); s.writeDouble(e.value); } } /** * Reads the given number of entries from the input stream, returning the corresponding tree. * * @param s the input stream. * @param n the (positive) number of entries to read. * @param pred the entry containing the key that preceeds the first key in the tree. * @param succ the entry containing the key that follows the last key in the tree. */ private Entry readTree(final java.io.ObjectInputStream s, final int n, final Entry pred, final Entry succ) throws java.io.IOException, ClassNotFoundException { if (n == 1) { final Entry top = new Entry(s.readInt(), s.readDouble()); top.pred(pred); top.succ(succ); top.black(true); return top; } if (n == 2) { /* We handle separately this case so that recursion will *always* be on nonempty subtrees. */ final Entry top = new Entry(s.readInt(), s.readDouble()); top.black(true); top.right(new Entry(s.readInt(), s.readDouble())); top.right.pred(top); top.pred(pred); top.right.succ(succ); return top; } // The right subtree is the largest one. final int rightN = n / 2, leftN = n - rightN - 1; final Entry top = new Entry(); top.left(readTree(s, leftN, pred, top)); top.key = s.readInt(); top.value = s.readDouble(); top.black(true); top.right(readTree(s, rightN, top, succ)); if (n + 2 == ((n + 2) & -(n + 2))) top.right.black(false); // Quick test for determining whether n + 2 is a // power of 2. return top; } private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); /* The storedComparator is now correctly set, but we must restore on-the-fly the actualComparator. */ setActualComparator(); allocatePaths(); if (count != 0) { tree = readTree(s, count, null, null); Entry e; e = tree; while (e.left() != null) e = e.left(); firstEntry = e; e = tree; while (e.right() != null) e = e.right(); lastEntry = e; } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy