it.unimi.dsi.fastutil.ints.Int2IntOpenHashMap Maven / Gradle / Ivy
Show all versions of fastutil-core Show documentation
/*
* Copyright (C) 2002-2024 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package it.unimi.dsi.fastutil.ints;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Map;
import java.util.Arrays;
import java.util.NoSuchElementException;
import java.util.function.Consumer;
import it.unimi.dsi.fastutil.objects.AbstractObjectSet;
import it.unimi.dsi.fastutil.objects.ObjectIterator;
import it.unimi.dsi.fastutil.objects.ObjectSpliterator;
import it.unimi.dsi.fastutil.objects.ObjectSpliterators;
/**
* A type-specific hash map with a fast, small-footprint implementation.
*
*
* Instances of this class use a hash table to represent a map. The table is filled up to a
* specified load factor, and then doubled in size to accommodate new entries. If the table
* is emptied below one fourth of the load factor, it is halved in size; however, the table
* is never reduced to a size smaller than that at creation time: this approach makes it possible to
* create maps with a large capacity in which insertions and deletions do not cause immediately
* rehashing. Moreover, halving is not performed when deleting entries from an iterator, as it would
* interfere with the iteration process.
*
*
* Note that {@link #clear()} does not modify the hash table size. Rather, a family of
* {@linkplain #trim() trimming methods} lets you control the size of the table; this is
* particularly useful if you reuse instances of this class.
*
*
* Entries returned by the type-specific {@link #entrySet()} method implement the suitable
* type-specific {@link it.unimi.dsi.fastutil.Pair Pair} interface; only values are mutable.
*
* @see Hash
* @see HashCommon
*/
public class Int2IntOpenHashMap extends AbstractInt2IntMap implements java.io.Serializable, Cloneable, Hash {
private static final long serialVersionUID = 0L;
private static final boolean ASSERTS = false;
/** The array of keys. */
protected transient int[] key;
/** The array of values. */
protected transient int[] value;
/** The mask for wrapping a position counter. */
protected transient int mask;
/** Whether this map contains the key zero. */
protected transient boolean containsNullKey;
/** The current table size. */
protected transient int n;
/** Threshold after which we rehash. It must be the table size times {@link #f}. */
protected transient int maxFill;
/** We never resize below this threshold, which is the construction-time {#n}. */
protected final transient int minN;
/** Number of entries in the set (including the key zero, if present). */
protected int size;
/** The acceptable load factor. */
protected final float f;
/** Cached set of entries. */
protected transient FastEntrySet entries;
/** Cached set of keys. */
protected transient IntSet keys;
/** Cached collection of values. */
protected transient IntCollection values;
/**
* Creates a new hash map.
*
*
* The actual table size will be the least power of two greater than {@code expected}/{@code f}.
*
* @param expected the expected number of elements in the hash map.
* @param f the load factor.
*/
public Int2IntOpenHashMap(final int expected, final float f) {
if (f <= 0 || f >= 1) throw new IllegalArgumentException("Load factor must be greater than 0 and smaller than 1");
if (expected < 0) throw new IllegalArgumentException("The expected number of elements must be nonnegative");
this.f = f;
minN = n = arraySize(expected, f);
mask = n - 1;
maxFill = maxFill(n, f);
key = new int[n + 1];
value = new int[n + 1];
}
/**
* Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*
* @param expected the expected number of elements in the hash map.
*/
public Int2IntOpenHashMap(final int expected) {
this(expected, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new hash map with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} entries and
* {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*/
public Int2IntOpenHashMap() {
this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new hash map copying a given one.
*
* @param m a {@link Map} to be copied into the new hash map.
* @param f the load factor.
*/
public Int2IntOpenHashMap(final Map extends Integer, ? extends Integer> m, final float f) {
this(m.size(), f);
putAll(m);
}
/**
* Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given one.
*
* @param m a {@link Map} to be copied into the new hash map.
*/
public Int2IntOpenHashMap(final Map extends Integer, ? extends Integer> m) {
this(m, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new hash map copying a given type-specific one.
*
* @param m a type-specific map to be copied into the new hash map.
* @param f the load factor.
*/
public Int2IntOpenHashMap(final Int2IntMap m, final float f) {
this(m.size(), f);
putAll(m);
}
/**
* Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given
* type-specific one.
*
* @param m a type-specific map to be copied into the new hash map.
*/
public Int2IntOpenHashMap(final Int2IntMap m) {
this(m, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new hash map using the elements of two parallel arrays.
*
* @param k the array of keys of the new hash map.
* @param v the array of corresponding values in the new hash map.
* @param f the load factor.
* @throws IllegalArgumentException if {@code k} and {@code v} have different lengths.
*/
public Int2IntOpenHashMap(final int[] k, final int[] v, final float f) {
this(k.length, f);
if (k.length != v.length) throw new IllegalArgumentException("The key array and the value array have different lengths (" + k.length + " and " + v.length + ")");
for (int i = 0; i < k.length; i++) this.put(k[i], v[i]);
}
/**
* Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using the elements of
* two parallel arrays.
*
* @param k the array of keys of the new hash map.
* @param v the array of corresponding values in the new hash map.
* @throws IllegalArgumentException if {@code k} and {@code v} have different lengths.
*/
public Int2IntOpenHashMap(final int[] k, final int[] v) {
this(k, v, DEFAULT_LOAD_FACTOR);
}
private int realSize() {
return containsNullKey ? size - 1 : size;
}
/**
* Ensures that this map can hold a certain number of keys without rehashing.
*
* @param capacity a number of keys; there will be no rehashing unless the map {@linkplain #size()
* size} exceeds this number.
*/
public void ensureCapacity(final int capacity) {
final int needed = arraySize(capacity, f);
if (needed > n) rehash(needed);
}
private void tryCapacity(final long capacity) {
final int needed = (int)Math.min(1 << 30, Math.max(2, HashCommon.nextPowerOfTwo((long)Math.ceil(capacity / f))));
if (needed > n) rehash(needed);
}
private int removeEntry(final int pos) {
final int oldValue = value[pos];
size--;
shiftKeys(pos);
if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2);
return oldValue;
}
private int removeNullEntry() {
containsNullKey = false;
final int oldValue = value[n];
size--;
if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2);
return oldValue;
}
@Override
public void putAll(Map extends Integer, ? extends Integer> m) {
if (f <= .5) ensureCapacity(m.size()); // The resulting map will be sized for m.size() elements
else tryCapacity(size() + m.size()); // The resulting map will be tentatively sized for size() + m.size()
// elements
super.putAll(m);
}
private int find(final int k) {
if (((k) == (0))) return containsNullKey ? n : -(n + 1);
int curr;
final int[] key = this.key;
int pos;
// The starting point.
if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k))) & mask]) == (0))) return -(pos + 1);
if (((k) == (curr))) return pos;
// There's always an unused entry.
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == (0))) return -(pos + 1);
if (((k) == (curr))) return pos;
}
}
private void insert(final int pos, final int k, final int v) {
if (pos == n) containsNullKey = true;
key[pos] = k;
value[pos] = v;
if (size++ >= maxFill) rehash(arraySize(size + 1, f));
if (ASSERTS) checkTable();
}
@Override
public int put(final int k, final int v) {
final int pos = find(k);
if (pos < 0) {
insert(-pos - 1, k, v);
return defRetValue;
}
final int oldValue = value[pos];
value[pos] = v;
return oldValue;
}
private int addToValue(final int pos, final int incr) {
final int oldValue = value[pos];
value[pos] = oldValue + incr;
return oldValue;
}
/**
* Adds an increment to value currently associated with a key.
*
*
* Note that this method respects the {@linkplain #defaultReturnValue() default return value}
* semantics: when called with a key that does not currently appears in the map, the key will be
* associated with the default return value plus the given increment.
*
* @param k the key.
* @param incr the increment.
* @return the old value, or the {@linkplain #defaultReturnValue() default return value} if no value
* was present for the given key.
*/
public int addTo(final int k, final int incr) {
int pos;
if (((k) == (0))) {
if (containsNullKey) return addToValue(n, incr);
pos = n;
containsNullKey = true;
} else {
int curr;
final int[] key = this.key;
// The starting point.
if (!((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k))) & mask]) == (0))) {
if (((curr) == (k))) return addToValue(pos, incr);
while (!((curr = key[pos = (pos + 1) & mask]) == (0))) if (((curr) == (k))) return addToValue(pos, incr);
}
}
key[pos] = k;
value[pos] = defRetValue + incr;
if (size++ >= maxFill) rehash(arraySize(size + 1, f));
if (ASSERTS) checkTable();
return defRetValue;
}
/**
* Shifts left entries with the specified hash code, starting at the specified position, and empties
* the resulting free entry.
*
* @param pos a starting position.
*/
protected final void shiftKeys(int pos) {
// Shift entries with the same hash.
int last, slot;
int curr;
final int[] key = this.key;
final int value[] = this.value;
for (;;) {
pos = ((last = pos) + 1) & mask;
for (;;) {
if (((curr = key[pos]) == (0))) {
key[last] = (0);
return;
}
slot = (it.unimi.dsi.fastutil.HashCommon.mix((curr))) & mask;
if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break;
pos = (pos + 1) & mask;
}
key[last] = curr;
value[last] = value[pos];
}
}
@Override
public int remove(final int k) {
if (((k) == (0))) {
if (containsNullKey) return removeNullEntry();
return defRetValue;
}
int curr;
final int[] key = this.key;
int pos;
// The starting point.
if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k))) & mask]) == (0))) return defRetValue;
if (((k) == (curr))) return removeEntry(pos);
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == (0))) return defRetValue;
if (((k) == (curr))) return removeEntry(pos);
}
}
@Override
public int get(final int k) {
if (((k) == (0))) return containsNullKey ? value[n] : defRetValue;
int curr;
final int[] key = this.key;
int pos;
// The starting point.
if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k))) & mask]) == (0))) return defRetValue;
if (((k) == (curr))) return value[pos];
// There's always an unused entry.
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == (0))) return defRetValue;
if (((k) == (curr))) return value[pos];
}
}
@Override
public boolean containsKey(final int k) {
if (((k) == (0))) return containsNullKey;
int curr;
final int[] key = this.key;
int pos;
// The starting point.
if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k))) & mask]) == (0))) return false;
if (((k) == (curr))) return true;
// There's always an unused entry.
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == (0))) return false;
if (((k) == (curr))) return true;
}
}
@Override
public boolean containsValue(final int v) {
final int key[] = this.key;
final int value[] = this.value;
if (containsNullKey && ((value[n]) == (v))) return true;
for (int i = n; i-- != 0;) if (!((key[i]) == (0)) && ((value[i]) == (v))) return true;
return false;
}
/** {@inheritDoc} */
@Override
public int getOrDefault(final int k, final int defaultValue) {
if (((k) == (0))) return containsNullKey ? value[n] : defaultValue;
int curr;
final int[] key = this.key;
int pos;
// The starting point.
if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k))) & mask]) == (0))) return defaultValue;
if (((k) == (curr))) return value[pos];
// There's always an unused entry.
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == (0))) return defaultValue;
if (((k) == (curr))) return value[pos];
}
}
/** {@inheritDoc} */
@Override
public int putIfAbsent(final int k, final int v) {
final int pos = find(k);
if (pos >= 0) return value[pos];
insert(-pos - 1, k, v);
return defRetValue;
}
/** {@inheritDoc} */
@Override
public boolean remove(final int k, final int v) {
if (((k) == (0))) {
if (containsNullKey && ((v) == (value[n]))) {
removeNullEntry();
return true;
}
return false;
}
int curr;
final int[] key = this.key;
int pos;
// The starting point.
if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k))) & mask]) == (0))) return false;
if (((k) == (curr)) && ((v) == (value[pos]))) {
removeEntry(pos);
return true;
}
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == (0))) return false;
if (((k) == (curr)) && ((v) == (value[pos]))) {
removeEntry(pos);
return true;
}
}
}
/** {@inheritDoc} */
@Override
public boolean replace(final int k, final int oldValue, final int v) {
final int pos = find(k);
if (pos < 0 || !((oldValue) == (value[pos]))) return false;
value[pos] = v;
return true;
}
/** {@inheritDoc} */
@Override
public int replace(final int k, final int v) {
final int pos = find(k);
if (pos < 0) return defRetValue;
final int oldValue = value[pos];
value[pos] = v;
return oldValue;
}
/** {@inheritDoc} */
@Override
public int computeIfAbsent(final int k, final java.util.function.IntUnaryOperator mappingFunction) {
java.util.Objects.requireNonNull(mappingFunction);
final int pos = find(k);
if (pos >= 0) return value[pos];
final int newValue = mappingFunction.applyAsInt(k);
insert(-pos - 1, k, newValue);
return newValue;
}
/** {@inheritDoc} */
@Override
public int computeIfAbsent(final int key, final Int2IntFunction mappingFunction) {
java.util.Objects.requireNonNull(mappingFunction);
final int pos = find(key);
if (pos >= 0) return value[pos];
if (!mappingFunction.containsKey(key)) return defRetValue;
final int newValue = mappingFunction.get(key);
insert(-pos - 1, key, newValue);
return newValue;
}
/** {@inheritDoc} */
@Override
public int computeIfAbsentNullable(final int k, final java.util.function.IntFunction extends Integer> mappingFunction) {
java.util.Objects.requireNonNull(mappingFunction);
final int pos = find(k);
if (pos >= 0) return value[pos];
final Integer newValue = mappingFunction.apply(k);
if (newValue == null) return defRetValue;
final int v = (newValue).intValue();
insert(-pos - 1, k, v);
return v;
}
/** {@inheritDoc} */
@Override
public int computeIfPresent(final int k, final java.util.function.BiFunction super Integer, ? super Integer, ? extends Integer> remappingFunction) {
java.util.Objects.requireNonNull(remappingFunction);
final int pos = find(k);
if (pos < 0) return defRetValue;
final Integer newValue = remappingFunction.apply(Integer.valueOf(k), Integer.valueOf(value[pos]));
if (newValue == null) {
if (((k) == (0))) removeNullEntry();
else removeEntry(pos);
return defRetValue;
}
return value[pos] = (newValue).intValue();
}
/** {@inheritDoc} */
@Override
public int compute(final int k, final java.util.function.BiFunction super Integer, ? super Integer, ? extends Integer> remappingFunction) {
java.util.Objects.requireNonNull(remappingFunction);
final int pos = find(k);
final Integer newValue = remappingFunction.apply(Integer.valueOf(k), pos >= 0 ? Integer.valueOf(value[pos]) : null);
if (newValue == null) {
if (pos >= 0) {
if (((k) == (0))) removeNullEntry();
else removeEntry(pos);
}
return defRetValue;
}
int newVal = (newValue).intValue();
if (pos < 0) {
insert(-pos - 1, k, newVal);
return newVal;
}
return value[pos] = newVal;
}
/** {@inheritDoc} */
@Override
public int merge(final int k, final int v, final java.util.function.BiFunction super Integer, ? super Integer, ? extends Integer> remappingFunction) {
java.util.Objects.requireNonNull(remappingFunction);
final int pos = find(k);
if (pos < 0) {
if (pos < 0) insert(-pos - 1, k, v);
else value[pos] = v;
return v;
}
final Integer newValue = remappingFunction.apply(Integer.valueOf(value[pos]), Integer.valueOf(v));
if (newValue == null) {
if (((k) == (0))) removeNullEntry();
else removeEntry(pos);
return defRetValue;
}
return value[pos] = (newValue).intValue();
}
/* Removes all elements from this map.
*
*
To increase object reuse, this method does not change the table size.
* If you want to reduce the table size, you must use {@link #trim()}.
*
*/
@Override
public void clear() {
if (size == 0) return;
size = 0;
containsNullKey = false;
Arrays.fill(key, (0));
}
@Override
public int size() {
return size;
}
@Override
public boolean isEmpty() {
return size == 0;
}
/**
* The entry class for a hash map does not record key and value, but rather the position in the hash
* table of the corresponding entry. This is necessary so that calls to
* {@link java.util.Map.Entry#setValue(Object)} are reflected in the map
*/
final class MapEntry implements Int2IntMap.Entry, Map.Entry, IntIntPair {
// The table index this entry refers to, or -1 if this entry has been deleted.
int index;
MapEntry(final int index) {
this.index = index;
}
MapEntry() {
}
@Override
public int getIntKey() {
return key[index];
}
@Override
public int leftInt() {
return key[index];
}
@Override
public int getIntValue() {
return value[index];
}
@Override
public int rightInt() {
return value[index];
}
@Override
public int setValue(final int v) {
final int oldValue = value[index];
value[index] = v;
return oldValue;
}
@Override
public IntIntPair right(final int v) {
value[index] = v;
return this;
}
/**
* {@inheritDoc}
*
* @deprecated Please use the corresponding type-specific method instead.
*/
@Deprecated
@Override
public Integer getKey() {
return Integer.valueOf(key[index]);
}
/**
* {@inheritDoc}
*
* @deprecated Please use the corresponding type-specific method instead.
*/
@Deprecated
@Override
public Integer getValue() {
return Integer.valueOf(value[index]);
}
/**
* {@inheritDoc}
*
* @deprecated Please use the corresponding type-specific method instead.
*/
@Deprecated
@Override
public Integer setValue(final Integer v) {
return Integer.valueOf(setValue((v).intValue()));
}
@SuppressWarnings("unchecked")
@Override
public boolean equals(final Object o) {
if (!(o instanceof Map.Entry)) return false;
Map.Entry e = (Map.Entry)o;
return ((key[index]) == ((e.getKey()).intValue())) && ((value[index]) == ((e.getValue()).intValue()));
}
@Override
public int hashCode() {
return (key[index]) ^ (value[index]);
}
@Override
public String toString() {
return key[index] + "=>" + value[index];
}
}
/** An iterator over a hash map. */
private abstract class MapIterator {
/**
* The index of the last entry returned, if positive or zero; initially, {@link #n}. If negative,
* the last entry returned was that of the key of index {@code - pos - 1} from the {@link #wrapped}
* list.
*/
int pos = n;
/**
* The index of the last entry that has been returned (more precisely, the value of {@link #pos} if
* {@link #pos} is positive, or {@link Integer#MIN_VALUE} if {@link #pos} is negative). It is -1 if
* either we did not return an entry yet, or the last returned entry has been removed.
*/
int last = -1;
/** A downward counter measuring how many entries must still be returned. */
int c = size;
/** A boolean telling us whether we should return the entry with the null key. */
boolean mustReturnNullKey = Int2IntOpenHashMap.this.containsNullKey;
/**
* A lazily allocated list containing keys of entries that have wrapped around the table because of
* removals.
*/
IntArrayList wrapped;
@SuppressWarnings("unused")
abstract void acceptOnIndex(final ConsumerType action, final int index);
public boolean hasNext() {
return c != 0;
}
public int nextEntry() {
if (!hasNext()) throw new NoSuchElementException();
c--;
if (mustReturnNullKey) {
mustReturnNullKey = false;
return last = n;
}
final int key[] = Int2IntOpenHashMap.this.key;
for (;;) {
if (--pos < 0) {
// We are just enumerating elements from the wrapped list.
last = Integer.MIN_VALUE;
final int k = wrapped.getInt(-pos - 1);
int p = (it.unimi.dsi.fastutil.HashCommon.mix((k))) & mask;
while (!((k) == (key[p]))) p = (p + 1) & mask;
return p;
}
if (!((key[pos]) == (0))) return last = pos;
}
}
public void forEachRemaining(final ConsumerType action) {
if (mustReturnNullKey) {
mustReturnNullKey = false;
acceptOnIndex(action, last = n);
c--;
}
final int key[] = Int2IntOpenHashMap.this.key;
while (c != 0) {
if (--pos < 0) {
// We are just enumerating elements from the wrapped list.
last = Integer.MIN_VALUE;
final int k = wrapped.getInt(-pos - 1);
int p = (it.unimi.dsi.fastutil.HashCommon.mix((k))) & mask;
while (!((k) == (key[p]))) p = (p + 1) & mask;
acceptOnIndex(action, p);
c--;
} else if (!((key[pos]) == (0))) {
acceptOnIndex(action, last = pos);
c--;
}
}
}
/**
* Shifts left entries with the specified hash code, starting at the specified position, and empties
* the resulting free entry.
*
* @param pos a starting position.
*/
private void shiftKeys(int pos) {
// Shift entries with the same hash.
int last, slot;
int curr;
final int[] key = Int2IntOpenHashMap.this.key;
final int value[] = Int2IntOpenHashMap.this.value;
for (;;) {
pos = ((last = pos) + 1) & mask;
for (;;) {
if (((curr = key[pos]) == (0))) {
key[last] = (0);
return;
}
slot = (it.unimi.dsi.fastutil.HashCommon.mix((curr))) & mask;
if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break;
pos = (pos + 1) & mask;
}
if (pos < last) { // Wrapped entry.
if (wrapped == null) wrapped = new IntArrayList(2);
wrapped.add(key[pos]);
}
key[last] = curr;
value[last] = value[pos];
}
}
public void remove() {
if (last == -1) throw new IllegalStateException();
if (last == n) {
containsNullKey = false;
} else if (pos >= 0) shiftKeys(last);
else {
// We're removing wrapped entries.
Int2IntOpenHashMap.this.remove(wrapped.getInt(-pos - 1));
last = -1; // Note that we must not decrement size
return;
}
size--;
last = -1; // You can no longer remove this entry.
if (ASSERTS) checkTable();
}
public int skip(final int n) {
int i = n;
while (i-- != 0 && hasNext()) nextEntry();
return n - i - 1;
}
}
private final class EntryIterator extends MapIterator> implements ObjectIterator {
private MapEntry entry;
@Override
public MapEntry next() {
return entry = new MapEntry(nextEntry());
}
// forEachRemaining inherited from MapIterator superclass.
@Override
final void acceptOnIndex(final Consumer super Int2IntMap.Entry> action, final int index) {
action.accept(entry = new MapEntry(index));
}
@Override
public void remove() {
super.remove();
entry.index = -1; // You cannot use a deleted entry.
}
}
private final class FastEntryIterator extends MapIterator> implements ObjectIterator {
private final MapEntry entry = new MapEntry();
@Override
public MapEntry next() {
entry.index = nextEntry();
return entry;
}
// forEachRemaining inherited from MapIterator superclass.
@Override
final void acceptOnIndex(final Consumer super Int2IntMap.Entry> action, final int index) {
entry.index = index;
action.accept(entry);
}
}
private abstract class MapSpliterator> {
/**
* The index (which bucket) of the next item to give to the action. Unlike {@link SetIterator}, this
* counts up instead of down.
*/
int pos = 0;
/** The maximum bucket (exclusive) to iterate to */
int max = n;
/** An upwards counter counting how many we have given */
int c = 0;
/** A boolean telling us whether we should return the null key. */
boolean mustReturnNull = Int2IntOpenHashMap.this.containsNullKey;
boolean hasSplit = false;
MapSpliterator() {
}
MapSpliterator(int pos, int max, boolean mustReturnNull, boolean hasSplit) {
this.pos = pos;
this.max = max;
this.mustReturnNull = mustReturnNull;
this.hasSplit = hasSplit;
}
abstract void acceptOnIndex(final ConsumerType action, final int index);
abstract SplitType makeForSplit(int pos, int max, boolean mustReturnNull);
public boolean tryAdvance(final ConsumerType action) {
if (mustReturnNull) {
mustReturnNull = false;
++c;
acceptOnIndex(action, n);
return true;
}
final int key[] = Int2IntOpenHashMap.this.key;
while (pos < max) {
if (!((key[pos]) == (0))) {
++c;
acceptOnIndex(action, pos++);
return true;
}
++pos;
}
return false;
}
public void forEachRemaining(final ConsumerType action) {
if (mustReturnNull) {
mustReturnNull = false;
++c;
acceptOnIndex(action, n);
}
final int key[] = Int2IntOpenHashMap.this.key;
while (pos < max) {
if (!((key[pos]) == (0))) {
acceptOnIndex(action, pos);
++c;
}
++pos;
}
}
public long estimateSize() {
if (!hasSplit) {
// Root spliterator; we know how many are remaining.
return size - c;
} else {
// After we split, we can no longer know exactly how many we have (or at least not efficiently).
// (size / n) * (max - pos) aka currentTableDensity * numberOfBucketsLeft seems like a good
// estimate.
return Math.min(size - c, (long)(((double)realSize() / n) * (max - pos)) + (mustReturnNull ? 1 : 0));
}
}
public SplitType trySplit() {
if (pos >= max - 1) return null;
int retLen = (max - pos) >> 1;
if (retLen <= 1) return null;
int myNewPos = pos + retLen;
int retPos = pos;
int retMax = myNewPos;
// Since null is returned first, and the convention is that the returned split is the prefix of
// elements,
// the split will take care of returning null (if needed), and we won't return it anymore.
SplitType split = makeForSplit(retPos, retMax, mustReturnNull);
this.pos = myNewPos;
this.mustReturnNull = false;
this.hasSplit = true;
return split;
}
public long skip(long n) {
if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n);
if (n == 0) return 0;
long skipped = 0;
if (mustReturnNull) {
mustReturnNull = false;
++skipped;
--n;
}
final int key[] = Int2IntOpenHashMap.this.key;
while (pos < max && n > 0) {
if (!((key[pos++]) == (0))) {
++skipped;
--n;
}
}
return skipped;
}
}
private final class EntrySpliterator extends MapSpliterator, EntrySpliterator> implements ObjectSpliterator {
private static final int POST_SPLIT_CHARACTERISTICS = ObjectSpliterators.SET_SPLITERATOR_CHARACTERISTICS & ~java.util.Spliterator.SIZED;
EntrySpliterator() {
}
EntrySpliterator(int pos, int max, boolean mustReturnNull, boolean hasSplit) {
super(pos, max, mustReturnNull, hasSplit);
}
@Override
public int characteristics() {
return hasSplit ? POST_SPLIT_CHARACTERISTICS : ObjectSpliterators.SET_SPLITERATOR_CHARACTERISTICS;
}
@Override
final void acceptOnIndex(final Consumer super Int2IntMap.Entry> action, final int index) {
action.accept(new MapEntry(index));
}
@Override
final EntrySpliterator makeForSplit(int pos, int max, boolean mustReturnNull) {
return new EntrySpliterator(pos, max, mustReturnNull, true);
}
}
private final class MapEntrySet extends AbstractObjectSet implements FastEntrySet {
@Override
public ObjectIterator iterator() {
return new EntryIterator();
}
@Override
public ObjectIterator fastIterator() {
return new FastEntryIterator();
}
@Override
public ObjectSpliterator spliterator() {
return new EntrySpliterator();
}
//
@Override
public boolean contains(final Object o) {
if (!(o instanceof Map.Entry)) return false;
final Map.Entry, ?> e = (Map.Entry, ?>)o;
if (e.getKey() == null || !(e.getKey() instanceof Integer)) return false;
if (e.getValue() == null || !(e.getValue() instanceof Integer)) return false;
final int k = ((Integer)(e.getKey())).intValue();
final int v = ((Integer)(e.getValue())).intValue();
if (((k) == (0))) return Int2IntOpenHashMap.this.containsNullKey && ((value[n]) == (v));
int curr;
final int[] key = Int2IntOpenHashMap.this.key;
int pos;
// The starting point.
if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k))) & mask]) == (0))) return false;
if (((k) == (curr))) return ((value[pos]) == (v));
// There's always an unused entry.
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == (0))) return false;
if (((k) == (curr))) return ((value[pos]) == (v));
}
}
@Override
public boolean remove(final Object o) {
if (!(o instanceof Map.Entry)) return false;
final Map.Entry, ?> e = (Map.Entry, ?>)o;
if (e.getKey() == null || !(e.getKey() instanceof Integer)) return false;
if (e.getValue() == null || !(e.getValue() instanceof Integer)) return false;
final int k = ((Integer)(e.getKey())).intValue();
final int v = ((Integer)(e.getValue())).intValue();
if (((k) == (0))) {
if (containsNullKey && ((value[n]) == (v))) {
removeNullEntry();
return true;
}
return false;
}
int curr;
final int[] key = Int2IntOpenHashMap.this.key;
int pos;
// The starting point.
if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k))) & mask]) == (0))) return false;
if (((curr) == (k))) {
if (((value[pos]) == (v))) {
removeEntry(pos);
return true;
}
return false;
}
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == (0))) return false;
if (((curr) == (k))) {
if (((value[pos]) == (v))) {
removeEntry(pos);
return true;
}
}
}
}
@Override
public int size() {
return size;
}
@Override
public void clear() {
Int2IntOpenHashMap.this.clear();
}
/** {@inheritDoc} */
@Override
public void forEach(final Consumer super Int2IntMap.Entry> consumer) {
if (containsNullKey) consumer.accept(new MapEntry(n));
final int key[] = Int2IntOpenHashMap.this.key;
for (int pos = n; pos-- != 0;) if (!((key[pos]) == (0))) consumer.accept(new MapEntry(pos));
}
/** {@inheritDoc} */
@Override
public void fastForEach(final Consumer super Int2IntMap.Entry> consumer) {
final MapEntry entry = new MapEntry();
if (containsNullKey) {
entry.index = n;
consumer.accept(entry);
}
final int key[] = Int2IntOpenHashMap.this.key;
for (int pos = n; pos-- != 0;) if (!((key[pos]) == (0))) {
entry.index = pos;
consumer.accept(entry);
}
}
}
@Override
public FastEntrySet int2IntEntrySet() {
if (entries == null) entries = new MapEntrySet();
return entries;
}
/**
* An iterator on keys.
*
*
* We simply override the
* {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and
* possibly their type-specific counterparts) so that they return keys instead of entries.
*/
private final class KeyIterator extends MapIterator implements IntIterator {
public KeyIterator() {
super();
}
// forEachRemaining inherited from MapIterator superclass.
// Despite the superclass declared with generics, the way Java inherits and generates bridge methods
// avoids the boxing/unboxing
@Override
final void acceptOnIndex(final java.util.function.IntConsumer action, final int index) {
action.accept(key[index]);
}
@Override
public int nextInt() {
return key[nextEntry()];
}
}
private final class KeySpliterator extends MapSpliterator implements IntSpliterator {
private static final int POST_SPLIT_CHARACTERISTICS = IntSpliterators.SET_SPLITERATOR_CHARACTERISTICS & ~java.util.Spliterator.SIZED;
KeySpliterator() {
}
KeySpliterator(int pos, int max, boolean mustReturnNull, boolean hasSplit) {
super(pos, max, mustReturnNull, hasSplit);
}
@Override
public int characteristics() {
return hasSplit ? POST_SPLIT_CHARACTERISTICS : IntSpliterators.SET_SPLITERATOR_CHARACTERISTICS;
}
@Override
final void acceptOnIndex(final java.util.function.IntConsumer action, final int index) {
action.accept(key[index]);
}
@Override
final KeySpliterator makeForSplit(int pos, int max, boolean mustReturnNull) {
return new KeySpliterator(pos, max, mustReturnNull, true);
}
}
private final class KeySet extends AbstractIntSet {
@Override
public IntIterator iterator() {
return new KeyIterator();
}
@Override
public IntSpliterator spliterator() {
return new KeySpliterator();
}
/** {@inheritDoc} */
@Override
public void forEach(final java.util.function.IntConsumer consumer) {
final int key[] = Int2IntOpenHashMap.this.key;
if (containsNullKey) consumer.accept(key[n]);
for (int pos = n; pos-- != 0;) {
final int k = key[pos];
if (!((k) == (0))) consumer.accept(k);
}
}
@Override
public int size() {
return size;
}
@Override
public boolean contains(int k) {
return containsKey(k);
}
@Override
public boolean remove(int k) {
final int oldSize = size;
Int2IntOpenHashMap.this.remove(k);
return size != oldSize;
}
@Override
public void clear() {
Int2IntOpenHashMap.this.clear();
}
}
@Override
public IntSet keySet() {
if (keys == null) keys = new KeySet();
return keys;
}
/**
* An iterator on values.
*
*
* We simply override the
* {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and
* possibly their type-specific counterparts) so that they return values instead of entries.
*/
private final class ValueIterator extends MapIterator implements IntIterator {
public ValueIterator() {
super();
}
// forEachRemaining inherited from MapIterator superclass.
// Despite the superclass declared with generics, the way Java inherits and generates bridge methods
// avoids the boxing/unboxing
@Override
final void acceptOnIndex(final java.util.function.IntConsumer action, final int index) {
action.accept(value[index]);
}
@Override
public int nextInt() {
return value[nextEntry()];
}
}
private final class ValueSpliterator extends MapSpliterator implements IntSpliterator {
private static final int POST_SPLIT_CHARACTERISTICS = IntSpliterators.COLLECTION_SPLITERATOR_CHARACTERISTICS & ~java.util.Spliterator.SIZED;
ValueSpliterator() {
}
ValueSpliterator(int pos, int max, boolean mustReturnNull, boolean hasSplit) {
super(pos, max, mustReturnNull, hasSplit);
}
@Override
public int characteristics() {
return hasSplit ? POST_SPLIT_CHARACTERISTICS : IntSpliterators.COLLECTION_SPLITERATOR_CHARACTERISTICS;
}
@Override
final void acceptOnIndex(final java.util.function.IntConsumer action, final int index) {
action.accept(value[index]);
}
@Override
final ValueSpliterator makeForSplit(int pos, int max, boolean mustReturnNull) {
return new ValueSpliterator(pos, max, mustReturnNull, true);
}
}
@Override
public IntCollection values() {
if (values == null) values = new AbstractIntCollection() {
@Override
public IntIterator iterator() {
return new ValueIterator();
}
@Override
public IntSpliterator spliterator() {
return new ValueSpliterator();
}
/** {@inheritDoc} */
@Override
public void forEach(final java.util.function.IntConsumer consumer) {
final int key[] = Int2IntOpenHashMap.this.key;
final int value[] = Int2IntOpenHashMap.this.value;
if (containsNullKey) consumer.accept(value[n]);
for (int pos = n; pos-- != 0;) if (!((key[pos]) == (0))) consumer.accept(value[pos]);
}
@Override
public int size() {
return size;
}
@Override
public boolean contains(int v) {
return containsValue(v);
}
@Override
public void clear() {
Int2IntOpenHashMap.this.clear();
}
};
return values;
}
/**
* Rehashes the map, making the table as small as possible.
*
*
* This method rehashes the table to the smallest size satisfying the load factor. It can be used
* when the set will not be changed anymore, so to optimize access speed and size.
*
*
* If the table size is already the minimum possible, this method does nothing.
*
* @return true if there was enough memory to trim the map.
* @see #trim(int)
*/
public boolean trim() {
return trim(size);
}
/**
* Rehashes this map if the table is too large.
*
*
* Let N be the smallest table size that can hold max(n,{@link #size()})
* entries, still satisfying the load factor. If the current table size is smaller than or equal to
* N, this method does nothing. Otherwise, it rehashes this map in a table of size
* N.
*
*
* This method is useful when reusing maps. {@linkplain #clear() Clearing a map} leaves the table
* size untouched. If you are reusing a map many times, you can call this method with a typical size
* to avoid keeping around a very large table just because of a few large transient maps.
*
* @param n the threshold for the trimming.
* @return true if there was enough memory to trim the map.
* @see #trim()
*/
public boolean trim(final int n) {
final int l = HashCommon.nextPowerOfTwo((int)Math.ceil(n / f));
if (l >= this.n || size > maxFill(l, f)) return true;
try {
rehash(l);
} catch (OutOfMemoryError cantDoIt) {
return false;
}
return true;
}
/**
* Rehashes the map.
*
*
* This method implements the basic rehashing strategy, and may be overridden by subclasses
* implementing different rehashing strategies (e.g., disk-based rehashing). However, you should not
* override this method unless you understand the internal workings of this class.
*
* @param newN the new size
*/
protected void rehash(final int newN) {
final int key[] = this.key;
final int value[] = this.value;
final int mask = newN - 1; // Note that this is used by the hashing macro
final int newKey[] = new int[newN + 1];
final int newValue[] = new int[newN + 1];
int i = n, pos;
for (int j = realSize(); j-- != 0;) {
while (((key[--i]) == (0)));
if (!((newKey[pos = (it.unimi.dsi.fastutil.HashCommon.mix((key[i]))) & mask]) == (0))) while (!((newKey[pos = (pos + 1) & mask]) == (0)));
newKey[pos] = key[i];
newValue[pos] = value[i];
}
newValue[newN] = value[n];
n = newN;
this.mask = mask;
maxFill = maxFill(n, f);
this.key = newKey;
this.value = newValue;
}
/**
* Returns a deep copy of this map.
*
*
* This method performs a deep copy of this hash map; the data stored in the map, however, is not
* cloned. Note that this makes a difference only for object keys.
*
* @return a deep copy of this map.
*/
@Override
public Int2IntOpenHashMap clone() {
Int2IntOpenHashMap c;
try {
c = (Int2IntOpenHashMap)super.clone();
} catch (CloneNotSupportedException cantHappen) {
throw new InternalError();
}
c.keys = null;
c.values = null;
c.entries = null;
c.containsNullKey = containsNullKey;
c.key = key.clone();
c.value = value.clone();
return c;
}
/**
* Returns a hash code for this map.
*
* This method overrides the generic method provided by the superclass. Since {@code equals()} is
* not overriden, it is important that the value returned by this method is the same value as the
* one returned by the overriden method.
*
* @return a hash code for this map.
*/
@Override
public int hashCode() {
int h = 0;
final int key[] = this.key;
final int value[] = this.value;
for (int j = realSize(), i = 0, t = 0; j-- != 0;) {
while (((key[i]) == (0))) i++;
t = (key[i]);
t ^= (value[i]);
h += t;
i++;
}
// Zero / null keys have hash zero.
if (containsNullKey) h += (value[n]);
return h;
}
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
final int key[] = this.key;
final int value[] = this.value;
final EntryIterator i = new EntryIterator();
s.defaultWriteObject();
for (int j = size, e; j-- != 0;) {
e = i.nextEntry();
s.writeInt(key[e]);
s.writeInt(value[e]);
}
}
private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
n = arraySize(size, f);
maxFill = maxFill(n, f);
mask = n - 1;
final int key[] = this.key = new int[n + 1];
final int value[] = this.value = new int[n + 1];
int k;
int v;
for (int i = size, pos; i-- != 0;) {
k = s.readInt();
v = s.readInt();
if (((k) == (0))) {
pos = n;
containsNullKey = true;
} else {
pos = (it.unimi.dsi.fastutil.HashCommon.mix((k))) & mask;
while (!((key[pos]) == (0))) pos = (pos + 1) & mask;
}
key[pos] = k;
value[pos] = v;
}
if (ASSERTS) checkTable();
}
private void checkTable() {
}
}