All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.fastutil.longs.LongCollection Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists, and queues with a small memory footprint and fast operations; it provides also big (64-bit) arrays, sets, and lists, sorting algorithms, fast, practical I/O classes for binary and text files, and facilities for memory mapping large files. This jar (fastutil-core.jar) contains data structures based on integers, longs, doubles, and objects, only; fastutil.jar contains all classes. If you have both jars in your dependencies, this jar should be excluded.

The newest version!
/*
	* Copyright (C) 2002-2024 Sebastiano Vigna
	*
	* Licensed under the Apache License, Version 2.0 (the "License");
	* you may not use this file except in compliance with the License.
	* You may obtain a copy of the License at
	*
	*     http://www.apache.org/licenses/LICENSE-2.0
	*
	* Unless required by applicable law or agreed to in writing, software
	* distributed under the License is distributed on an "AS IS" BASIS,
	* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
	* See the License for the specific language governing permissions and
	* limitations under the License.
	*/
package it.unimi.dsi.fastutil.longs;

import java.util.Collection;
import static it.unimi.dsi.fastutil.Size64.sizeOf;

/**
 * A type-specific {@link Collection}; provides some additional methods that use polymorphism to
 * avoid (un)boxing.
 *
 * 

* Additionally, this class defines strengthens (again) {@link #iterator()}. * *

* This interface specifies reference equality semantics (members will be compared equal with * {@code ==} instead of {@link Object#equals(Object) equals}), which may result in breaks in * contract if attempted to be used with non reference-equality semantics based {@link Collection}s. * For example, a {@code aReferenceCollection.equals(aObjectCollection)} may return different a * different result then {@code aObjectCollection.equals(aReferenceCollection)}, in violation of * {@link Object#equals equals}'s contract requiring it being symmetric. * * @see Collection */ public interface LongCollection extends Collection, LongIterable { /** * Returns a type-specific iterator on the elements of this collection. * * @apiNote This specification strengthens the one given in {@link java.lang.Iterable#iterator()}, * which was already strengthened in the corresponding type-specific class, but was * weakened by the fact that this interface extends {@link Collection}. * * @return a type-specific iterator on the elements of this collection. */ @Override LongIterator iterator(); /** * Returns a primitive iterator on the elements of this collection. *

* *

* This method is identical to {@link #iterator()}, as the type-specific iterator is already * compatible with the JDK's primitive iterators. It only exists for compatibility with the other * primitive types' {@code Collection}s that have use for widened iterators. * * @return a primitive iterator on the elements of this collection. * @since 8.5.0 */ @Override default LongIterator longIterator() { return iterator(); } // If you change these default spliterator methods, you will likely need to update Iterable, List, // Set, and SortedSet too /** * Returns a type-specific spliterator on the elements of this collection. * *

* See {@link java.util.Collection#spliterator()} for more documentation on the requirements of the * returned spliterator. * * @apiNote This specification strengthens the one given in * {@link java.util.Collection#spliterator()}. *

* Also, this is generally the only {@code spliterator} method subclasses should override. * * @implSpec The default implementation returns a late-binding spliterator (see * {@link java.util.Spliterator Spliterator} for documentation on what binding policies * mean) that wraps this instance's type specific {@link #iterator}. *

* Additionally, it reports {@link java.util.Spliterator#SIZED Spliterator.SIZED} * * @implNote As this default implementation wraps the iterator, and {@link java.util.Iterator} is an * inherently linear API, the returned spliterator will yield limited performance gains * when run in parallel contexts, as the returned spliterator's * {@link java.util.Spliterator#trySplit() trySplit()} will have linear runtime. * * @return a type-specific spliterator on the elements of this collection. * @since 8.5.0 */ @Override default LongSpliterator spliterator() { return LongSpliterators.asSpliterator(iterator(), sizeOf(this), LongSpliterators.COLLECTION_SPLITERATOR_CHARACTERISTICS); } /** * Returns a primitive spliterator on the elements of this collection. *

* *

* This method is identical to {@link #spliterator()}, as the type-specific spliterator is already * compatible with the JDK's primitive spliterators. It only exists for compatibility with the other * primitive types' {@code Collection}s that have use for widened spliterators. * * @return a primitive spliterator on the elements of this collection. * @since 8.5.0 */ @Override default LongSpliterator longSpliterator() { return spliterator(); } /** * Ensures that this collection contains the specified element (optional operation). * * @see Collection#add(Object) */ boolean add(long key); /** * Returns {@code true} if this collection contains the specified element. * * @see Collection#contains(Object) */ boolean contains(long key); /** * Removes a single instance of the specified element from this collection, if it is present * (optional operation). * *

* Note that this method should be called {@link java.util.Collection#remove(Object) remove()}, but * the clash with the similarly named index-based method in the {@link java.util.List} interface * forces us to use a distinguished name. For simplicity, the set interfaces reinstates * {@code remove()}. * * @see Collection#remove(Object) */ boolean rem(long key); /** * {@inheritDoc} * * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default boolean add(final Long key) { return add((key).longValue()); } /** * {@inheritDoc} * * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default boolean contains(final Object key) { if (key == null) return false; return contains(((Long)(key)).longValue()); } /** * {@inheritDoc} * * @deprecated Please use (and implement) the {@code rem()} method instead. */ @Deprecated @Override default boolean remove(final Object key) { if (key == null) return false; return rem(((Long)(key)).longValue()); } /** * Returns a primitive type array containing the items of this collection. * * @return a primitive type array containing the items of this collection. * @see Collection#toArray() */ long[] toLongArray(); /** * Returns a primitive type array containing the items of this collection. * *

* Note that, contrarily to {@link Collection#toArray(Object[])}, this methods just writes all * elements of this collection: no special value will be added after the last one. * * @param a if this array is big enough, it will be used to store this collection. * @return a primitive type array containing the items of this collection. * @see Collection#toArray(Object[]) * @deprecated Please use {@code toArray()} instead—this method is redundant and will be * removed in the future. */ @Deprecated default long[] toLongArray(long a[]) { return toArray(a); } /** * Returns an array containing all of the elements in this collection; the runtime type of the * returned array is that of the specified array. * *

* Note that, contrarily to {@link Collection#toArray(Object[])}, this methods just writes all * elements of this collection: no special value will be added after the last one. * * @param a if this array is big enough, it will be used to store this collection. * @return a primitive type array containing the items of this collection. * @see Collection#toArray(Object[]) */ long[] toArray(long a[]); /** * Adds all elements of the given type-specific collection to this collection. * * @param c a type-specific collection. * @see Collection#addAll(Collection) * @return {@code true} if this collection changed as a result of the call. */ boolean addAll(LongCollection c); /** * Checks whether this collection contains all elements from the given type-specific collection. * * @param c a type-specific collection. * @see Collection#containsAll(Collection) * @return {@code true} if this collection contains all elements of the argument. */ boolean containsAll(LongCollection c); /** * Remove from this collection all elements in the given type-specific collection. * * @param c a type-specific collection. * @see Collection#removeAll(Collection) * @return {@code true} if this collection changed as a result of the call. */ boolean removeAll(LongCollection c); /** * {@inheritDoc} * * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default boolean removeIf(final java.util.function.Predicate filter) { return removeIf(filter instanceof java.util.function.LongPredicate ? ((java.util.function.LongPredicate)filter) : (java.util.function.LongPredicate)key -> filter.test(Long.valueOf(key))); } /** * Remove from this collection all elements which satisfy the given predicate. * * @param filter a predicate which returns {@code true} for elements to be removed. * @see Collection#removeIf(java.util.function.Predicate) * @return {@code true} if any elements were removed. * @apiNote Implementing classes should generally override this method, and take the default * implementation of the other overloads which will delegate to this method (after proper * conversions). */ default boolean removeIf(final java.util.function.LongPredicate filter) { java.util.Objects.requireNonNull(filter); boolean removed = false; final LongIterator each = iterator(); while (each.hasNext()) { if (filter.test(each.nextLong())) { each.remove(); removed = true; } } return removed; } // Because our primitive Predicate interface extends both the JDK's primitive // and object Predicate interfaces, calling this method with it would be ambiguous. // This overload exists to pass it to the proper primitive overload. /** * Remove from this collection all elements which satisfy the given predicate. * *

* WARNING: Overriding this method is almost always a mistake, as this overload only exists * to disambiguate. Instead, override the {@code removeIf()} overload that uses the JDK's primitive * predicate type (e.g. {@link java.util.function.IntPredicate}). * *

* If Java supported final default methods, this would be one, but sadly it does not. * *

* If you checked and are overriding the version with {@code java.util.function.XPredicate}, and * still see this warning, then your IDE is incorrectly conflating this method with the proper * method to override, and you can safely ignore this message. * * @param filter a predicate which returns {@code true} for elements to be removed. * @see Collection#removeIf(java.util.function.Predicate) * @return {@code true} if any elements were removed. */ default boolean removeIf(final LongPredicate filter) { return removeIf((java.util.function.LongPredicate)filter); } /** * Retains in this collection only elements from the given type-specific collection. * * @param c a type-specific collection. * @see Collection#retainAll(Collection) * @return {@code true} if this collection changed as a result of the call. */ boolean retainAll(LongCollection c); /** * {@inheritDoc} * * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default java.util.stream.Stream stream() { return Collection.super.stream(); } /** * Return a primitive stream over the elements, performing widening casts if needed. * * @return a primitive stream over the elements. * @see Collection#stream() * @see java.util.stream.IntStream */ default java.util.stream.LongStream longStream() { return java.util.stream.StreamSupport.longStream(longSpliterator(), false); } /** * {@inheritDoc} * * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default java.util.stream.Stream parallelStream() { return Collection.super.parallelStream(); } /** * Return a parallel primitive stream over the elements, performing widening casts if needed. * * @return a parallel primitive stream over the elements. * @see Collection#parallelStream() * @see java.util.stream.IntStream */ default java.util.stream.LongStream longParallelStream() { return java.util.stream.StreamSupport.longStream(longSpliterator(), true); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy