All Downloads are FREE. Search and download functionalities are using the official Maven repository.

drv.ArrayIndirectPriorityQueue.drv Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists, and queues with a small memory footprint and fast operations; it provides also big (64-bit) arrays, sets, and lists, sorting algorithms, fast, practical I/O classes for binary and text files, and facilities for memory mapping large files. This jar (fastutil-core.jar) contains data structures based on integers, longs, doubles, and objects, only; fastutil.jar contains all classes. If you have both jars in your dependencies, this jar should be excluded.

There is a newer version: 8.5.15
Show newest version
/*
 * Copyright (C) 2003-2021 Paolo Boldi and Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


package PACKAGE;

#if KEY_CLASS_Object
import java.util.Comparator;
import it.unimi.dsi.fastutil.IndirectPriorityQueue;
#endif

#if ! KEY_CLASS_Integer
import it.unimi.dsi.fastutil.ints.IntArrays;
#endif

import java.util.NoSuchElementException;

/** A type-specific array-based semi-indirect priority queue.
 *
 * 

Instances of this class use as reference list a reference array, * which must be provided to each constructor, and represent a priority queue * using a backing array of integer indices—all operations are performed * directly on the array. The array is enlarged as needed, but it is never * shrunk. Use the {@link #trim()} method to reduce its size, if necessary. * * @implSpec This implementation is extremely inefficient, but it is difficult to beat * when the size of the queue is very small. Moreover, it allows to enqueue several * time the same index, without limitations. */ public class ARRAY_INDIRECT_PRIORITY_QUEUE KEY_GENERIC implements INDIRECT_PRIORITY_QUEUE KEY_GENERIC { /** The reference array. */ protected KEY_GENERIC_TYPE refArray[]; /** The backing array. */ protected int array[] = IntArrays.EMPTY_ARRAY; /** The number of elements in this queue. */ protected int size; /** The type-specific comparator used in this queue. */ protected KEY_COMPARATOR KEY_SUPER_GENERIC c; /** The first index, cached, if {@link #firstIndexValid} is true. */ protected int firstIndex; /** Whether {@link #firstIndex} contains a valid value. */ protected boolean firstIndexValid; /** Creates a new empty queue without elements with a given capacity and comparator. * * @param refArray the reference array. * @param capacity the initial capacity of this queue. * @param c the comparator used in this queue, or {@code null} for the natural order. */ public ARRAY_INDIRECT_PRIORITY_QUEUE(KEY_GENERIC_TYPE[] refArray, int capacity, KEY_COMPARATOR KEY_SUPER_GENERIC c) { if (capacity > 0) this.array = new int[capacity]; this.refArray = refArray; this.c = c; } /** Creates a new empty queue with given capacity and using the natural order. * * @param refArray the reference array. * @param capacity the initial capacity of this queue. */ public ARRAY_INDIRECT_PRIORITY_QUEUE(KEY_GENERIC_TYPE[] refArray, int capacity) { this(refArray, capacity, null); } /** Creates a new empty queue with capacity equal to the length of the reference array and a given comparator. * * @param refArray the reference array. * @param c the comparator used in this queue, or {@code null} for the natural order. */ public ARRAY_INDIRECT_PRIORITY_QUEUE(KEY_GENERIC_TYPE[] refArray, KEY_COMPARATOR KEY_SUPER_GENERIC c) { this(refArray, refArray.length, c); } /** Creates a new empty queue with capacity equal to the length of the reference array and using the natural order. * @param refArray the reference array. */ public ARRAY_INDIRECT_PRIORITY_QUEUE(KEY_GENERIC_TYPE[] refArray) { this(refArray, refArray.length, null); } /** Wraps a given array in a queue using a given comparator. * *

The queue returned by this method will be backed by the given array. * * @param refArray the reference array. * @param a an array of indices into {@code refArray}. * @param size the number of elements to be included in the queue. * @param c the comparator used in this queue, or {@code null} for the natural order. */ public ARRAY_INDIRECT_PRIORITY_QUEUE(final KEY_GENERIC_TYPE[] refArray, final int[] a, int size, final KEY_COMPARATOR KEY_SUPER_GENERIC c) { this(refArray, 0, c); this.array = a; this.size = size; } /** Wraps a given array in a queue using a given comparator. * *

The queue returned by this method will be backed by the given array. * * @param refArray the reference array. * @param a an array of indices into {@code refArray}. * @param c the comparator used in this queue, or {@code null} for the natural order. */ public ARRAY_INDIRECT_PRIORITY_QUEUE(final KEY_GENERIC_TYPE[] refArray, final int[] a, final KEY_COMPARATOR KEY_SUPER_GENERIC c) { this(refArray, a, a.length, c); } /** Wraps a given array in a queue using the natural order. * *

The queue returned by this method will be backed by the given array. * * @param refArray the reference array. * @param a an array of indices into {@code refArray}. * @param size the number of elements to be included in the queue. */ public ARRAY_INDIRECT_PRIORITY_QUEUE(final KEY_GENERIC_TYPE[] refArray, final int[] a, int size) { this(refArray, a, size, null); } /** Wraps a given array in a queue using the natural order. * *

The queue returned by this method will be backed by the given array. * * @param refArray the reference array. * @param a an array of indices into {@code refArray}. */ public ARRAY_INDIRECT_PRIORITY_QUEUE(final KEY_GENERIC_TYPE[] refArray, final int[] a) { this(refArray, a, a.length); } /** Returns the index (in {@link #array}) of the smallest element. */ SUPPRESS_WARNINGS_KEY_UNCHECKED private int findFirst() { if (firstIndexValid) return this.firstIndex; firstIndexValid = true; int i = size; int firstIndex = --i; KEY_GENERIC_TYPE first = refArray[array[firstIndex]]; if (c == null) while(i-- != 0) { if (KEY_LESS(refArray[array[i]], first)) first = refArray[array[firstIndex = i]]; } else while(i-- != 0) { if (c.compare(refArray[array[i]], first) < 0) first = refArray[array[firstIndex = i]]; } return this.firstIndex = firstIndex; } /** Returns the index (in {@link #array}) of the largest element. */ SUPPRESS_WARNINGS_KEY_UNCHECKED private int findLast() { int i = size; int lastIndex = --i; KEY_GENERIC_TYPE last = refArray[array[lastIndex]]; if (c == null) { while(i-- != 0) if (KEY_LESS(last, refArray[array[i]])) last = refArray[array[lastIndex = i]]; } else { while(i-- != 0) if (c.compare(last, refArray[array[i]]) < 0) last = refArray[array[lastIndex = i]]; } return lastIndex; } protected final void ensureNonEmpty() { if (size == 0) throw new NoSuchElementException(); } /** Ensures that the given index is a firstIndexValid reference. * * @param index an index in the reference array. * @throws IndexOutOfBoundsException if the given index is negative or larger than the reference array length. */ protected void ensureElement(final int index) { if (index < 0) throw new IndexOutOfBoundsException("Index (" + index + ") is negative"); if (index >= refArray.length) throw new IndexOutOfBoundsException("Index (" + index + ") is larger than or equal to reference array size (" + refArray.length + ")"); } /** {@inheritDoc} * *

Note that for efficiency reasons this method will not throw an exception * when {@code x} is already in the queue. However, the queue state will become * inconsistent and the following behaviour will not be predictable. */ @Override SUPPRESS_WARNINGS_KEY_UNCHECKED public void enqueue(int x) { ensureElement(x); if (size == array.length) array = IntArrays.grow(array, size + 1); if (firstIndexValid) { if (c == null) { if (KEY_LESS(refArray[x], refArray[array[firstIndex]])) firstIndex = size; } else if (c.compare(refArray[x], refArray[array[firstIndex]]) < 0) firstIndex = size; } else firstIndexValid = false; array[size++] = x; } @Override public int dequeue() { ensureNonEmpty(); final int firstIndex = findFirst(); final int result = array[firstIndex]; if (--size != 0) System.arraycopy(array, firstIndex + 1, array, firstIndex, size - firstIndex); firstIndexValid = false; return result; } @Override public int first() { ensureNonEmpty(); return array[findFirst()]; } @Override public int last() { ensureNonEmpty(); return array[findLast()]; } @Override public void changed() { ensureNonEmpty(); firstIndexValid = false; } /** {@inheritDoc} * *

Note that for efficiency reasons this method will not throw an exception * when {@code index} is not in the queue. */ @Override public void changed(int index) { ensureElement(index); if (index == firstIndex) firstIndexValid = false; } /** Signals the queue that all elements have changed. */ @Override public void allChanged() { firstIndexValid = false; } @Override public boolean remove(int index) { ensureElement(index); final int[] a = array; int i = size; while(i-- != 0) if (a[i] == index) break; if (i < 0) return false; firstIndexValid = false; if (--size != 0) System.arraycopy(a, i + 1, a, i, size - i); return true; } /** Writes in the provided array the front of the queue, that is, the set of indices * whose elements have the same priority as the top. * @param a an array whose initial part will be filled with the frnot (must be sized as least as the heap size). * @return the number of elements of the front. */ @Override public int front(int[] a) { final KEY_GENERIC_TYPE top = refArray[array[findFirst()]]; int i = size, c = 0; while(i-- != 0) if (KEY_EQUALS_NOT_NULL(top, refArray[array[i]])) a[c++] = array[i]; return c; } @Override public int size() { return size; } @Override public void clear() { size = 0; firstIndexValid = false; } /** Trims the backing array so that it has exactly {@link #size()} elements. */ public void trim() { array = IntArrays.trim(array, size); } @Override public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return c; } @Override public String toString() { StringBuffer s = new StringBuffer(); s.append("["); for (int i = 0; i < size; i++) { if (i != 0) s.append(", "); s.append(refArray[array [i]]); } s.append("]"); return s.toString(); } #ifdef TEST private static long seed = System.currentTimeMillis(); private static java.util.Random r = new java.util.Random(seed); private static KEY_TYPE genKey() { #if KEY_CLASS_Byte || KEY_CLASS_Short || KEY_CLASS_Character return (KEY_TYPE)(r.nextInt()); #elif KEYS_PRIMITIVE return r.NEXT_KEY(); #elif KEY_CLASS_Object return Integer.toBinaryString(r.nextInt()); #else return new java.io.Serializable() {}; #endif } private static java.text.NumberFormat format = new java.text.DecimalFormat("#,###.00"); private static java.text.FieldPosition p = new java.text.FieldPosition(0); private static String format(double d) { StringBuffer s = new StringBuffer(); return format.format(d, s, p).toString(); } private static void speedTest(int n, boolean comp) { int i, j, s; ARRAY_INDIRECT_PRIORITY_QUEUE[] m = new ARRAY_INDIRECT_PRIORITY_QUEUE[100000]; HEAP_INDIRECT_PRIORITY_QUEUE[] t = new HEAP_INDIRECT_PRIORITY_QUEUE[m.length]; KEY_TYPE k[] = new KEY_TYPE[n]; KEY_TYPE nk[] = new KEY_TYPE[m.length]; long ms; for(i = 0; i < n; i++) k[i] = genKey(); for(i = 0; i < m.length; i++) nk[i] = genKey(); double totEnq = 0, totDeq = 0, totChange = 0, d; for(i = 0; i < m.length; i++) { t[i] = new HEAP_INDIRECT_PRIORITY_QUEUE(k); m[i] = new ARRAY_INDIRECT_PRIORITY_QUEUE(k); } if (comp) { for(j = 0; j < 20; j++) { for(i = 0; i < m.length; i++) t[i].clear(); ms = System.currentTimeMillis(); s = m.length; while(s-- != 0) { i = n; while(i-- != 0) t[s].enqueue(i); } d = System.currentTimeMillis() - ms; if (j > 2) totEnq += d; System.out.print("Enqueue: " + format(m.length * n/d) +" K/s "); ms = System.currentTimeMillis(); s = m.length; while(s-- != 0) { i = n; while(i-- != 0) { k[t[s].first()] = nk[i]; t[s].changed(); } } d = System.currentTimeMillis() - ms; if (j > 2) totChange += d; System.out.print("Change: " + format(m.length * n/d) +" K/s "); ms = System.currentTimeMillis(); s = m.length; while(s-- != 0) { i = n; while(i-- != 0) t[s].dequeue(); } d = System.currentTimeMillis() - ms; if (j > 2) totDeq += d; System.out.print("Dequeue: " + format(m.length * n/d) +" K/s "); System.out.println(); } System.out.println(); System.out.println("Heap: Enqueue: " + format(m.length * (j-3)*n/totEnq) + " K/s Dequeue: " + format(m.length * (j-3)*n/totDeq) + " K/s Change: " + format(m.length * (j-3)*n/totChange) + " K/s"); System.out.println(); totEnq = totChange = totDeq = 0; } for(j = 0; j < 20; j++) { for(i = 0; i < m.length; i++) m[i].clear(); ms = System.currentTimeMillis(); s = m.length; while(s-- != 0) { i = n; while(i-- != 0) m[s].enqueue(i); } d = System.currentTimeMillis() - ms; if (j > 2) totEnq += d; System.out.print("Enqueue: " + format(m.length * n/d) +" K/s "); ms = System.currentTimeMillis(); s = m.length; while(s-- != 0) { i = n; while(i-- != 0) { k[m[s].first()] = nk[i]; m[s].changed(); } } d = System.currentTimeMillis() - ms; if (j > 2) totChange += d; System.out.print("Change: " + format(m.length * n/d) +" K/s "); ms = System.currentTimeMillis(); s = m.length; while(s-- != 0) { i = n; while(i-- != 0) m[s].dequeue(); } d = System.currentTimeMillis() - ms; if (j > 2) totDeq += d; System.out.print("Dequeue: " + format(m.length * n/d) +" K/s "); System.out.println(); } System.out.println(); System.out.println("Array: Enqueue: " + format(m.length * (j-3)*n/totEnq) + " K/s Dequeue: " + format(m.length * (j-3)*n/totDeq) + " K/s Change: " + format(m.length * (j-3)*n/totChange) + " K/s"); System.out.println(); } private static void fatal(String msg) { throw new AssertionError(msg); } private static void ensure(boolean cond, String msg) { if (cond) return; fatal(msg); } private static boolean heapEqual(int[] a, int[] b, int sizea, int sizeb) { if (sizea != sizeb) return false; KEY_TYPE[] aa = new KEY_TYPE[sizea]; KEY_TYPE[] bb = new KEY_TYPE[sizea]; for(int i = 0; i < sizea; i++) { aa[i] = ref[a[i]]; bb[i] = ref[b[i]]; } java.util.Arrays.sort(aa); java.util.Arrays.sort(bb); while(sizea-- != 0) if (!KEY_EQUALS(aa[sizea], bb[sizea])) return false; return true; } private static KEY_TYPE[] ref; protected static void runTest(int n) { long ms; Exception mThrowsIllegal, tThrowsIllegal, mThrowsOutOfBounds, tThrowsOutOfBounds, mThrowsNoElement, tThrowsNoElement; int rm = 0, rt = 0; ref = new KEY_TYPE[n]; for(int i = 0; i < n; i++) ref[i] = genKey(); ARRAY_INDIRECT_PRIORITY_QUEUE m = new ARRAY_INDIRECT_PRIORITY_QUEUE(ref); HEAP_INDIRECT_PRIORITY_QUEUE t = new HEAP_INDIRECT_PRIORITY_QUEUE(ref); /* We add pairs to t. */ for(int i = 0; i < n / 2; i++) { t.enqueue(i); m.enqueue(i); } ensure(heapEqual(m.array, t.heap, m.size(), t.size()), "Error (" + seed + "): m and t differ after creation (" + m + ", " + t + ")"); /* Now we add and remove random data in m and t, checking that the result is the same. */ for(int i=0; i<2*n; i++) { if (r.nextDouble() < 0.01) { t.clear(); m.clear(); for(int j = 0; j < n / 2; j++) { t.enqueue(j); m.enqueue(j); } } int T = r.nextInt(2 * n); mThrowsNoElement = tThrowsNoElement = mThrowsOutOfBounds = tThrowsOutOfBounds = mThrowsIllegal = tThrowsIllegal = null; try { t.enqueue(T); } catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; } catch (IllegalArgumentException e) { tThrowsIllegal = e; } if (tThrowsIllegal == null) { // To skip duplicates try { m.enqueue(T); } catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; } catch (IllegalArgumentException e) { mThrowsIllegal = e; } } mThrowsIllegal = tThrowsIllegal = null; // To skip duplicates ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + seed + "): enqueue() divergence in IndexOutOfBoundsException for " + T + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")"); ensure((mThrowsIllegal == null) == (tThrowsIllegal == null), "Error (" + seed + "): enqueue() divergence in IllegalArgumentException for " + T + " (" + mThrowsIllegal + ", " + tThrowsIllegal + ")"); ensure(heapEqual(m.array, t.heap, m.size(), t.size()), "Error (" + seed + "): m and t differ after enqueue (" + m + ", " + t + ")"); if (m.size() != 0) { ensure(KEY_EQUALS(ref[m.first()], ref[t.first()]), "Error (" + seed + "): m and t differ in first element after enqueue (" + m.first() + "->" + ref[m.first()] + ", " + t.first() + "->" + ref[t.first()] + ")"); } mThrowsNoElement = tThrowsNoElement = mThrowsOutOfBounds = tThrowsOutOfBounds = mThrowsIllegal = tThrowsIllegal = null; try { rm = m.dequeue(); while(! m.isEmpty() && KEY_EQUALS(ref[m.first()], ref[rm])) m.dequeue(); } catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; } catch (IllegalArgumentException e) { mThrowsIllegal = e; } catch (java.util.NoSuchElementException e) { mThrowsNoElement = e; } try { rt = t.dequeue(); while(! t.isEmpty() && KEY_EQUALS(ref[t.first()], ref[rt])) t.dequeue(); } catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; } catch (IllegalArgumentException e) { tThrowsIllegal = e; } catch (java.util.NoSuchElementException e) { tThrowsNoElement = e; } ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + seed + "): dequeue() divergence in IndexOutOfBoundsException (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")"); ensure((mThrowsIllegal == null) == (tThrowsIllegal == null), "Error (" + seed + "): dequeue() divergence in IllegalArgumentException (" + mThrowsIllegal + ", " + tThrowsIllegal + ")"); ensure((mThrowsNoElement == null) == (tThrowsNoElement == null), "Error (" + seed + "): dequeue() divergence in java.util.NoSuchElementException (" + mThrowsNoElement + ", " + tThrowsNoElement + ")"); if (mThrowsOutOfBounds == null) ensure(KEY_EQUALS(ref[rt], ref[rm]), "Error (" + seed + "): divergence in dequeue() between m and t (" + rm + "->" + ref[rm] + ", " + rt + "->" + ref[rt] + ")"); ensure(heapEqual(m.array, t.heap, m.size(), t.size()), "Error (" + seed + "): m and t differ after dequeue (" + m + ", " + t + ")"); if (m.size() != 0) { ensure(KEY_EQUALS(ref[m.first()], ref[t.first()]), "Error (" + seed + "): m and t differ in first element after dequeue (" + m.first() + "->" + ref[m.first()] + ", " + t.first() + "->" + ref[t.first()] + ")"); } mThrowsNoElement = tThrowsNoElement = mThrowsOutOfBounds = tThrowsOutOfBounds = mThrowsIllegal = tThrowsIllegal = null; int pos = r.nextInt(n * 2); try { m.remove(pos); } catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; } catch (IllegalArgumentException e) { mThrowsIllegal = e; } catch (java.util.NoSuchElementException e) { mThrowsNoElement = e; } try { t.remove(pos); } catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; } catch (IllegalArgumentException e) { tThrowsIllegal = e; } catch (java.util.NoSuchElementException e) { tThrowsNoElement = e; } ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + seed + "): remove(int) divergence in IndexOutOfBoundsException (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")"); ensure((mThrowsIllegal == null) == (tThrowsIllegal == null), "Error (" + seed + "): remove(int) divergence in IllegalArgumentException (" + mThrowsIllegal + ", " + tThrowsIllegal + ")"); ensure((mThrowsNoElement == null) == (tThrowsNoElement == null), "Error (" + seed + "): remove(int) divergence in java.util.NoSuchElementException (" + mThrowsNoElement + ", " + tThrowsNoElement + ")"); ensure(heapEqual(m.array, t.heap, m.size(), t.size()), "Error (" + seed + "): m and t differ after remove(int) (" + m + ", " + t + ")"); if (m.size() != 0) { ensure(KEY_EQUALS(ref[m.first()], ref[t.first()]), "Error (" + seed + "): m and t differ in first element after remove(int) (" + m.first() + "->" + ref[m.first()] + ", " + t.first() + "->" + ref[t.first()] + ")"); } mThrowsNoElement = tThrowsNoElement = mThrowsOutOfBounds = tThrowsOutOfBounds = mThrowsIllegal = tThrowsIllegal = null; pos = r.nextInt(n); try { t.changed(pos); } catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; } catch (IllegalArgumentException e) { tThrowsIllegal = e; } catch (java.util.NoSuchElementException e) { tThrowsNoElement = e; } if (tThrowsIllegal == null) { try { m.changed(pos); } catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; } catch (IllegalArgumentException e) { mThrowsIllegal = e; } catch (java.util.NoSuchElementException e) { mThrowsNoElement = e; } } ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + seed + "): change(int) divergence in IndexOutOfBoundsException (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")"); //ensure((mThrowsIllegal == null) == (tThrowsIllegal == null), "Error (" + seed + "): change(int) divergence in IllegalArgumentException (" + mThrowsIllegal + ", " + tThrowsIllegal + ")"); ensure((mThrowsNoElement == null) == (tThrowsNoElement == null), "Error (" + seed + "): change(int) divergence in java.util.NoSuchElementException (" + mThrowsNoElement + ", " + tThrowsNoElement + ")"); ensure(heapEqual(m.array, t.heap, m.size(), t.size()), "Error (" + seed + "): m and t differ after change(int) (" + m + ", " + t + ")"); if (m.size() != 0) { ensure(KEY_EQUALS(ref[m.first()], ref[t.first()]), "Error (" + seed + "): m and t differ in first element after change(int) (" + m.first() + "->" + ref[m.first()] + ", " + t.first() + "->" + ref[t.first()] + ")"); } int[] temp = (int[])t.heap.clone(); java.util.Arrays.sort(temp, 0, t.size()); // To scramble a bit m = new ARRAY_INDIRECT_PRIORITY_QUEUE(m.refArray, temp, t.size()); ensure(heapEqual(m.array, t.heap, m.size(), t.size()), "Error (" + seed + "): m and t differ after wrap (" + m + ", " + t + ")"); if (m.size() != 0) { ensure(KEY_EQUALS(ref[m.first()], ref[t.first()]), "Error (" + seed + "): m and t differ in first element after wrap (" + m.first() + "->" + ref[m.first()] + ", " + t.first() + "->" + ref[t.first()] + ")"); } if (m.size() != 0 && ((new it.unimi.dsi.fastutil.ints.IntOpenHashSet(m.array, 0, m.size)).size() == m.size())) { int first = m.first(); ref[first] = genKey(); //System.err.println("Pre-change m: " +m); //System.err.println("Pre-change t: " +t); m.changed(); t.changed(first); //System.err.println("Post-change m: " +m); //System.err.println("Post-change t: " +t); ensure(heapEqual(m.array, t.heap, m.size(), t.size()), "Error (" + seed + "): m and t differ after change (" + m + ", " + t + ")"); if (m.size() != 0) { ensure(KEY_EQUALS(ref[m.first()], ref[t.first()]), "Error (" + seed + "): m and t differ in first element after change (" + m.first() + "->" + ref[m.first()] + ", " + t.first() + "->" + ref[t.first()] + ")"); } } } /* Now we check that m actually holds the same data. */ m.clear(); ensure(m.isEmpty(), "Error (" + seed + "): m is not empty after clear()"); System.out.println("Test OK"); } public static void main(String args[]) throws Exception { int n = Integer.parseInt(args[1]); if (args.length > 2) r = new java.util.Random(seed = Long.parseLong(args[2])); try { if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest(n, "speedComp".equals(args[0])); else if ("test".equals(args[0])) runTest(n); } catch(Throwable e) { e.printStackTrace(System.err); System.err.println("seed: " + seed); throw e; } } #endif }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy