drv.LinkedOpenHashMap.drv Maven / Gradle / Ivy
Show all versions of fastutil-core Show documentation
/*
* Copyright (C) 2002-2021 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package PACKAGE;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Map;
import java.util.Arrays;
import java.util.NoSuchElementException;
import java.util.function.Consumer;
#if KEY_INDEX != VALUE_INDEX && VALUES_BYTE_CHAR_SHORT_FLOAT
import VALUE_PACKAGE.VALUE_CONSUMER;
#endif
#if KEY_INDEX != VALUE_INDEX && !(KEYS_REFERENCE && VALUES_REFERENCE)
import VALUE_PACKAGE.VALUE_COLLECTION;
import VALUE_PACKAGE.VALUE_ABSTRACT_COLLECTION;
#if VALUES_PRIMITIVE
import VALUE_PACKAGE.VALUE_ITERATOR;
import VALUE_PACKAGE.VALUE_SPLITERATOR;
import VALUE_PACKAGE.VALUE_SPLITERATORS;
#endif
#if VALUE_CLASS_Boolean
import it.unimi.dsi.fastutil.booleans.BooleanConsumer;
#endif
#endif
#ifdef Linked
import java.util.Comparator;
#if KEY_INDEX != VALUE_INDEX && !(KEYS_REFERENCE && VALUES_REFERENCE)
#if VALUES_PRIMITIVE
import VALUE_PACKAGE.VALUE_LIST_ITERATOR;
#else
import it.unimi.dsi.fastutil.objects.ObjectIterator;
#endif
#endif
#if ! KEYS_REFERENCE
import it.unimi.dsi.fastutil.objects.AbstractObjectSortedSet;
import it.unimi.dsi.fastutil.objects.ObjectListIterator;
import it.unimi.dsi.fastutil.objects.ObjectBidirectionalIterator;
import it.unimi.dsi.fastutil.objects.ObjectSpliterator;
import it.unimi.dsi.fastutil.objects.ObjectSpliterators;
import it.unimi.dsi.fastutil.objects.ObjectSortedSet;
#endif
/** A type-specific linked hash map with with a fast, small-footprint implementation.
*
* Instances of this class use a hash table to represent a map. The table is
* filled up to a specified load factor, and then doubled in size to
* accommodate new entries. If the table is emptied below one fourth
* of the load factor, it is halved in size; however, the table is never reduced to a
* size smaller than that at creation time: this approach makes it
* possible to create maps with a large capacity in which insertions and
* deletions do not cause immediately rehashing. Moreover, halving is
* not performed when deleting entries from an iterator, as it would interfere
* with the iteration process.
*
*
Note that {@link #clear()} does not modify the hash table size.
* Rather, a family of {@linkplain #trim() trimming
* methods} lets you control the size of the table; this is particularly useful
* if you reuse instances of this class.
*
*
Entries returned by the type-specific {@link #entrySet()} method implement
* the suitable type-specific {@link it.unimi.dsi.fastutil.Pair Pair} interface;
* only values are mutable.
*
*
Iterators generated by this map will enumerate pairs in the same order in which they
* have been added to the map (addition of pairs whose key is already present
* in the map does not change the iteration order). Note that this order has nothing in common with the natural
* order of the keys. The order is kept by means of a doubly linked list, represented
* via an array of longs parallel to the table.
*
*
This class implements the interface of a sorted map, so to allow easy
* access of the iteration order: for instance, you can get the first key
* in iteration order with {@code firstKey()} without having to create an
* iterator; however, this class partially violates the {@link java.util.SortedMap}
* contract because all submap methods throw an exception and {@link
* #comparator()} returns always {@code null}.
*
*
Additional methods, such as {@code getAndMoveToFirst()}, make it easy
* to use instances of this class as a cache (e.g., with LRU policy).
*
*
The iterators provided by the views of this class using are type-specific
* {@linkplain java.util.ListIterator list iterators}, and can be started at any
* element which is a key of the map, or
* a {@link NoSuchElementException} exception will be thrown.
* If, however, the provided element is not the first or last key in the
* map, the first access to the list index will require linear time, as in the worst case
* the entire key set must be scanned in iteration order to retrieve the positional
* index of the starting key. If you use just the methods of a type-specific {@link it.unimi.dsi.fastutil.BidirectionalIterator},
* however, all operations will be performed in constant time.
*
* @see Hash
* @see HashCommon
*/
public class OPEN_HASH_MAP KEY_VALUE_GENERIC extends ABSTRACT_SORTED_MAP KEY_VALUE_GENERIC implements java.io.Serializable, Cloneable, Hash {
#else
#if ! KEYS_REFERENCE
import it.unimi.dsi.fastutil.objects.AbstractObjectSet;
import it.unimi.dsi.fastutil.objects.ObjectIterator;
import it.unimi.dsi.fastutil.objects.ObjectSpliterator;
import it.unimi.dsi.fastutil.objects.ObjectSpliterators;
#endif
#ifdef Custom
/** A type-specific hash map with a fast, small-footprint implementation whose {@linkplain it.unimi.dsi.fastutil.Hash.Strategy hashing strategy}
* is specified at creation time.
*
*
Instances of this class use a hash table to represent a map. The table is
* filled up to a specified load factor, and then doubled in size to
* accommodate new entries. If the table is emptied below one fourth
* of the load factor, it is halved in size; however, the table is never reduced to a
* size smaller than that at creation time: this approach makes it
* possible to create maps with a large capacity in which insertions and
* deletions do not cause immediately rehashing. Moreover, halving is
* not performed when deleting entries from an iterator, as it would interfere
* with the iteration process.
*
*
Note that {@link #clear()} does not modify the hash table size.
* Rather, a family of {@linkplain #trim() trimming
* methods} lets you control the size of the table; this is particularly useful
* if you reuse instances of this class.
*
*
Entries returned by the type-specific {@link #entrySet()} method implement
* the suitable type-specific {@link it.unimi.dsi.fastutil.Pair Pair} interface;
* only values are mutable.
*
* @see Hash
* @see HashCommon
*/
public class OPEN_HASH_MAP KEY_VALUE_GENERIC extends ABSTRACT_MAP KEY_VALUE_GENERIC implements java.io.Serializable, Cloneable, Hash {
#else
/** A type-specific hash map with a fast, small-footprint implementation.
*
*
Instances of this class use a hash table to represent a map. The table is
* filled up to a specified load factor, and then doubled in size to
* accommodate new entries. If the table is emptied below one fourth
* of the load factor, it is halved in size; however, the table is never reduced to a
* size smaller than that at creation time: this approach makes it
* possible to create maps with a large capacity in which insertions and
* deletions do not cause immediately rehashing. Moreover, halving is
* not performed when deleting entries from an iterator, as it would interfere
* with the iteration process.
*
*
Note that {@link #clear()} does not modify the hash table size.
* Rather, a family of {@linkplain #trim() trimming
* methods} lets you control the size of the table; this is particularly useful
* if you reuse instances of this class.
*
*
Entries returned by the type-specific {@link #entrySet()} method implement
* the suitable type-specific {@link it.unimi.dsi.fastutil.Pair Pair} interface;
* only values are mutable.
*
* @see Hash
* @see HashCommon
*/
public class OPEN_HASH_MAP KEY_VALUE_GENERIC extends ABSTRACT_MAP KEY_VALUE_GENERIC implements java.io.Serializable, Cloneable, Hash {
#endif
#endif
private static final long serialVersionUID = 0L;
private static final boolean ASSERTS = ASSERTS_VALUE;
/** The array of keys. */
protected transient KEY_GENERIC_TYPE[] key;
/** The array of values. */
protected transient VALUE_GENERIC_TYPE[] value;
/** The mask for wrapping a position counter. */
protected transient int mask;
/** Whether this map contains the key zero. */
protected transient boolean containsNullKey;
#ifdef Custom
/** The hash strategy of this custom map. */
protected STRATEGY KEY_SUPER_GENERIC strategy;
#endif
#ifdef Linked
/** The index of the first entry in iteration order. It is valid iff {@link #size} is nonzero; otherwise, it contains -1. */
protected transient int first = -1;
/** The index of the last entry in iteration order. It is valid iff {@link #size} is nonzero; otherwise, it contains -1. */
protected transient int last = -1;
/** For each entry, the next and the previous entry in iteration order,
* stored as {@code ((prev & 0xFFFFFFFFL) << 32) | (next & 0xFFFFFFFFL)}.
* The first entry contains predecessor -1, and the last entry
* contains successor -1. */
protected transient long[] link;
#endif
/** The current table size. */
protected transient int n;
/** Threshold after which we rehash. It must be the table size times {@link #f}. */
protected transient int maxFill;
/** We never resize below this threshold, which is the construction-time {#n}. */
protected final transient int minN;
/** Number of entries in the set (including the key zero, if present). */
protected int size;
/** The acceptable load factor. */
protected final float f;
#ifdef Linked
/** Cached set of entries. */
protected transient FastSortedEntrySet KEY_VALUE_GENERIC entries;
/** Cached set of keys. */
protected transient SORTED_SET KEY_GENERIC keys;
#else
/** Cached set of entries. */
protected transient FastEntrySet KEY_VALUE_GENERIC entries;
/** Cached set of keys. */
protected transient SET KEY_GENERIC keys;
#endif
/** Cached collection of values. */
protected transient VALUE_COLLECTION VALUE_GENERIC values;
#ifdef Custom
/** Creates a new hash map.
*
*
The actual table size will be the least power of two greater than {@code expected}/{@code f}.
*
* @param expected the expected number of elements in the hash map.
* @param f the load factor.
* @param strategy the strategy.
*/
SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED
public OPEN_HASH_MAP(final int expected, final float f, final STRATEGY KEY_SUPER_GENERIC strategy) {
this.strategy = strategy;
#else
/** Creates a new hash map.
*
*
The actual table size will be the least power of two greater than {@code expected}/{@code f}.
*
* @param expected the expected number of elements in the hash map.
* @param f the load factor.
*/
SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED
public OPEN_HASH_MAP(final int expected, final float f) {
#endif
if (f <= 0 || f >= 1) throw new IllegalArgumentException("Load factor must be greater than 0 and smaller than 1");
if (expected < 0) throw new IllegalArgumentException("The expected number of elements must be nonnegative");
this.f = f;
minN = n = arraySize(expected, f);
mask = n - 1;
maxFill = maxFill(n, f);
key = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[n + 1];
value = VALUE_GENERIC_ARRAY_CAST new VALUE_TYPE[n + 1];
#ifdef Linked
link = new long[n + 1];
#endif
}
#ifdef Custom
/** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*
* @param expected the expected number of elements in the hash map.
* @param strategy the strategy.
*/
public OPEN_HASH_MAP(final int expected, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(expected, DEFAULT_LOAD_FACTOR, strategy);
}
#else
/** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*
* @param expected the expected number of elements in the hash map.
*/
public OPEN_HASH_MAP(final int expected) {
this(expected, DEFAULT_LOAD_FACTOR);
}
#endif
#ifdef Custom
/** Creates a new hash map with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} entries
* and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
* @param strategy the strategy.
*/
public OPEN_HASH_MAP(final STRATEGY KEY_SUPER_GENERIC strategy) {
this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR, strategy);
}
#else
/** Creates a new hash map with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} entries
* and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*/
public OPEN_HASH_MAP() {
this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR);
}
#endif
#ifdef Custom
/** Creates a new hash map copying a given one.
*
* @param m a {@link Map} to be copied into the new hash map.
* @param f the load factor.
* @param strategy the strategy.
*/
public OPEN_HASH_MAP(final Map extends KEY_GENERIC_CLASS, ? extends VALUE_GENERIC_CLASS> m, final float f, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(m.size(), f, strategy);
putAll(m);
}
#else
/** Creates a new hash map copying a given one.
*
* @param m a {@link Map} to be copied into the new hash map.
* @param f the load factor.
*/
public OPEN_HASH_MAP(final Map extends KEY_GENERIC_CLASS, ? extends VALUE_GENERIC_CLASS> m, final float f) {
this(m.size(), f);
putAll(m);
}
#endif
#ifdef Custom
/** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given one.
*
* @param m a {@link Map} to be copied into the new hash map.
* @param strategy the strategy.
*/
public OPEN_HASH_MAP(final Map extends KEY_GENERIC_CLASS, ? extends VALUE_GENERIC_CLASS> m, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(m, DEFAULT_LOAD_FACTOR, strategy);
}
#else
/** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given one.
*
* @param m a {@link Map} to be copied into the new hash map.
*/
public OPEN_HASH_MAP(final Map extends KEY_GENERIC_CLASS, ? extends VALUE_GENERIC_CLASS> m) {
this(m, DEFAULT_LOAD_FACTOR);
}
#endif
#ifdef Custom
/** Creates a new hash map copying a given type-specific one.
*
* @param m a type-specific map to be copied into the new hash map.
* @param f the load factor.
* @param strategy the strategy.
*/
public OPEN_HASH_MAP(final MAP KEY_VALUE_GENERIC m, final float f, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(m.size(), f, strategy);
putAll(m);
}
#else
/** Creates a new hash map copying a given type-specific one.
*
* @param m a type-specific map to be copied into the new hash map.
* @param f the load factor.
*/
public OPEN_HASH_MAP(final MAP KEY_VALUE_GENERIC m, final float f) {
this(m.size(), f);
putAll(m);
}
#endif
#ifdef Custom
/** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given type-specific one.
*
* @param m a type-specific map to be copied into the new hash map.
* @param strategy the strategy.
*/
public OPEN_HASH_MAP(final MAP KEY_VALUE_GENERIC m, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(m, DEFAULT_LOAD_FACTOR, strategy);
}
#else
/** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given type-specific one.
*
* @param m a type-specific map to be copied into the new hash map.
*/
public OPEN_HASH_MAP(final MAP KEY_VALUE_GENERIC m) {
this(m, DEFAULT_LOAD_FACTOR);
}
#endif
#ifdef Custom
/** Creates a new hash map using the elements of two parallel arrays.
*
* @param k the array of keys of the new hash map.
* @param v the array of corresponding values in the new hash map.
* @param f the load factor.
* @param strategy the strategy.
* @throws IllegalArgumentException if {@code k} and {@code v} have different lengths.
*/
public OPEN_HASH_MAP(final KEY_GENERIC_TYPE[] k, final VALUE_GENERIC_TYPE[] v, final float f, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(k.length, f, strategy);
if (k.length != v.length) throw new IllegalArgumentException("The key array and the value array have different lengths (" + k.length + " and " + v.length + ")");
for(int i = 0; i < k.length; i++) this.put(k[i], v[i]);
}
#else
/** Creates a new hash map using the elements of two parallel arrays.
*
* @param k the array of keys of the new hash map.
* @param v the array of corresponding values in the new hash map.
* @param f the load factor.
* @throws IllegalArgumentException if {@code k} and {@code v} have different lengths.
*/
public OPEN_HASH_MAP(final KEY_GENERIC_TYPE[] k, final VALUE_GENERIC_TYPE[] v, final float f) {
this(k.length, f);
if (k.length != v.length) throw new IllegalArgumentException("The key array and the value array have different lengths (" + k.length + " and " + v.length + ")");
for(int i = 0; i < k.length; i++) this.put(k[i], v[i]);
}
#endif
#ifdef Custom
/** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using the elements of two parallel arrays.
*
* @param k the array of keys of the new hash map.
* @param v the array of corresponding values in the new hash map.
* @param strategy the strategy.
* @throws IllegalArgumentException if {@code k} and {@code v} have different lengths.
*/
public OPEN_HASH_MAP(final KEY_GENERIC_TYPE[] k, final VALUE_GENERIC_TYPE[] v, final STRATEGY KEY_SUPER_GENERIC strategy) {
this(k, v, DEFAULT_LOAD_FACTOR, strategy);
}
#else
/** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using the elements of two parallel arrays.
*
* @param k the array of keys of the new hash map.
* @param v the array of corresponding values in the new hash map.
* @throws IllegalArgumentException if {@code k} and {@code v} have different lengths.
*/
public OPEN_HASH_MAP(final KEY_GENERIC_TYPE[] k, final VALUE_GENERIC_TYPE[] v) {
this(k, v, DEFAULT_LOAD_FACTOR);
}
#endif
#ifdef Custom
/** Returns the hashing strategy.
*
* @return the hashing strategy of this custom hash map.
*/
public STRATEGY KEY_SUPER_GENERIC strategy() {
return strategy;
}
#endif
private int realSize() {
return containsNullKey ? size - 1 : size;
}
private void ensureCapacity(final int capacity) {
final int needed = arraySize(capacity, f);
if (needed > n) rehash(needed);
}
private void tryCapacity(final long capacity) {
final int needed = (int)Math.min(1 << 30, Math.max(2, HashCommon.nextPowerOfTwo((long)Math.ceil(capacity / f))));
if (needed > n) rehash(needed);
}
private VALUE_GENERIC_TYPE removeEntry(final int pos) {
final VALUE_GENERIC_TYPE oldValue = value[pos];
#if VALUES_REFERENCE
value[pos] = null;
#endif
size--;
#ifdef Linked
fixPointers(pos);
#endif
shiftKeys(pos);
if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2);
return oldValue;
}
private VALUE_GENERIC_TYPE removeNullEntry() {
containsNullKey = false;
#if KEYS_REFERENCE
key[n] = null;
#endif
final VALUE_GENERIC_TYPE oldValue = value[n];
#if VALUES_REFERENCE
value[n] = null;
#endif
size--;
#ifdef Linked
fixPointers(n);
#endif
if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2);
return oldValue;
}
@Override
public void putAll(Map extends KEY_GENERIC_CLASS,? extends VALUE_GENERIC_CLASS> m) {
if (f <= .5) ensureCapacity(m.size()); // The resulting map will be sized for m.size() elements
else tryCapacity(size() + m.size()); // The resulting map will be tentatively sized for size() + m.size() elements
super.putAll(m);
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
private int find(final KEY_GENERIC_TYPE k) {
if (KEY_EQUALS_NULL(k)) return containsNullKey ? n : -(n + 1);
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
int pos;
// The starting point.
if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH(k) & mask])) return -(pos + 1);
if (KEY_EQUALS_NOT_NULL(k, curr)) return pos;
// There's always an unused entry.
while(true) {
if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return -(pos + 1);
if (KEY_EQUALS_NOT_NULL(k, curr)) return pos;
}
}
private void insert(final int pos, final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v) {
if (pos == n) containsNullKey = true;
key[pos] = k;
value[pos] = v;
#ifdef Linked
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER(link[pos], -1, -1);
link[pos] = -1L;
}
else {
SET_NEXT(link[last], pos);
SET_UPPER_LOWER(link[pos], last, -1);
last = pos;
}
#endif
if (size++ >= maxFill) rehash(arraySize(size + 1, f));
if (ASSERTS) checkTable();
}
@Override
public VALUE_GENERIC_TYPE put(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v) {
final int pos = find(k);
if (pos < 0) {
insert(-pos - 1, k, v);
return defRetValue;
}
final VALUE_GENERIC_TYPE oldValue = value[pos];
value[pos] = v;
return oldValue;
}
#if VALUE_CLASS_Byte || VALUE_CLASS_Short || VALUE_CLASS_Character || VALUE_CLASS_Integer || VALUE_CLASS_Long || VALUE_CLASS_Float || VALUE_CLASS_Double
private VALUE_GENERIC_TYPE addToValue(final int pos, final VALUE_GENERIC_TYPE incr) {
final VALUE_GENERIC_TYPE oldValue = value[pos];
#if VALUE_CLASS_Byte || VALUE_CLASS_Short || VALUE_CLASS_Character
value[pos] = (VALUE_TYPE)(oldValue + incr);
#else
value[pos] = oldValue + incr;
#endif
return oldValue;
}
/** Adds an increment to value currently associated with a key.
*
*
Note that this method respects the {@linkplain #defaultReturnValue() default return value} semantics: when
* called with a key that does not currently appears in the map, the key
* will be associated with the default return value plus
* the given increment.
*
* @param k the key.
* @param incr the increment.
* @return the old value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key.
*/
public VALUE_GENERIC_TYPE addTo(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE incr) {
int pos;
if (KEY_EQUALS_NULL(k)) {
if (containsNullKey) return addToValue(n, incr);
pos = n;
containsNullKey = true;
}
else {
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
// The starting point.
if (! KEY_IS_NULL(curr = key[pos = KEY2INTHASH(k) & mask])) {
if (KEY_EQUALS_NOT_NULL(curr, k)) return addToValue(pos, incr);
while(! KEY_IS_NULL(curr = key[pos = (pos + 1) & mask]))
if (KEY_EQUALS_NOT_NULL(curr, k)) return addToValue(pos, incr);
}
}
key[pos] = k;
#if VALUE_CLASS_Byte || VALUE_CLASS_Short || VALUE_CLASS_Character
value[pos] = (VALUE_TYPE)(defRetValue + incr);
#else
value[pos] = defRetValue + incr;
#endif
#ifdef Linked
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER(link[pos], -1, -1);
link[pos] = -1L;
}
else {
SET_NEXT(link[last], pos);
SET_UPPER_LOWER(link[pos], last, -1);
last = pos;
}
#endif
if (size++ >= maxFill) rehash(arraySize(size + 1, f));
if (ASSERTS) checkTable();
return defRetValue;
}
#endif
/** Shifts left entries with the specified hash code, starting at the specified position,
* and empties the resulting free entry.
*
* @param pos a starting position.
*/
protected final void shiftKeys(int pos) {
// Shift entries with the same hash.
int last, slot;
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
for(;;) {
pos = ((last = pos) + 1) & mask;
for(;;) {
if (KEY_IS_NULL(curr = key[pos])) {
key[last] = KEY_NULL;
#if VALUES_REFERENCE
value[last] = null;
#endif
return;
}
slot = KEY2INTHASH(curr) & mask;
if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break;
pos = (pos + 1) & mask;
}
key[last] = curr;
value[last] = value[pos];
#ifdef Linked
fixPointers(pos, last);
#endif
}
}
@Override
SUPPRESS_WARNINGS_KEY_UNCHECKED
public VALUE_GENERIC_TYPE REMOVE_VALUE(final KEY_TYPE k) {
if (KEY_EQUALS_NULL(KEY_GENERIC_CAST k)) {
if (containsNullKey) return removeNullEntry();
return defRetValue;
}
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
int pos;
// The starting point.
if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH_CAST(k) & mask])) return defRetValue;
if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return removeEntry(pos);
while(true) {
if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return defRetValue;
if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return removeEntry(pos);
}
}
#ifdef Linked
private VALUE_GENERIC_TYPE setValue(final int pos, final VALUE_GENERIC_TYPE v) {
final VALUE_GENERIC_TYPE oldValue = value[pos];
value[pos] = v;
return oldValue;
}
/** Removes the mapping associated with the first key in iteration order.
* @return the value previously associated with the first key in iteration order.
* @throws NoSuchElementException is this map is empty.
*/
public VALUE_GENERIC_TYPE REMOVE_FIRST_VALUE() {
if (size == 0) throw new NoSuchElementException();
final int pos = first;
// Abbreviated version of fixPointers(pos)
first = GET_NEXT(link[pos]);
if (0 <= first) {
// Special case of SET_PREV(link[first], -1)
link[first] |= (-1 & 0xFFFFFFFFL) << 32;
}
size--;
final VALUE_GENERIC_TYPE v = value[pos];
if (pos == n) {
containsNullKey = false;
#if KEYS_REFERENCE
key[n] = null;
#endif
#if VALUES_REFERENCE
value[n] = null;
#endif
}
else shiftKeys(pos);
if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2);
return v;
}
/** Removes the mapping associated with the last key in iteration order.
* @return the value previously associated with the last key in iteration order.
* @throws NoSuchElementException is this map is empty.
*/
public VALUE_GENERIC_TYPE REMOVE_LAST_VALUE() {
if (size == 0) throw new NoSuchElementException();
final int pos = last;
// Abbreviated version of fixPointers(pos)
last = GET_PREV(link[pos]);
if (0 <= last) {
// Special case of SET_NEXT(link[last], -1)
link[last] |= -1 & 0xFFFFFFFFL;
}
size--;
final VALUE_GENERIC_TYPE v = value[pos];
if (pos == n) {
containsNullKey = false;
#if KEYS_REFERENCE
key[n] = null;
#endif
#if VALUES_REFERENCE
value[n] = null;
#endif
}
else shiftKeys(pos);
if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2);
return v;
}
private void moveIndexToFirst(final int i) {
if (size == 1 || first == i) return;
if (last == i) {
last = GET_PREV(link[i]);
// Special case of SET_NEXT(link[last], -1);
link[last] |= -1 & 0xFFFFFFFFL;
}
else {
final long linki = link[i];
final int prev = GET_PREV(linki);
final int next = GET_NEXT(linki);
COPY_NEXT(link[prev], linki);
COPY_PREV(link[next], linki);
}
SET_PREV(link[first], i);
SET_UPPER_LOWER(link[i], -1, first);
first = i;
}
private void moveIndexToLast(final int i) {
if (size == 1 || last == i) return;
if (first == i) {
first = GET_NEXT(link[i]);
// Special case of SET_PREV(link[first], -1);
link[first] |= (-1 & 0xFFFFFFFFL) << 32;
}
else {
final long linki = link[i];
final int prev = GET_PREV(linki);
final int next = GET_NEXT(linki);
COPY_NEXT(link[prev], linki);
COPY_PREV(link[next], linki);
}
SET_NEXT(link[last], i);
SET_UPPER_LOWER(link[i], last, -1);
last = i;
}
/** Returns the value to which the given key is mapped; if the key is present, it is moved to the first position of the iteration order.
*
* @param k the key.
* @return the corresponding value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key.
*/
public VALUE_GENERIC_TYPE getAndMoveToFirst(final KEY_GENERIC_TYPE k) {
if (KEY_EQUALS_NULL(k)) {
if (containsNullKey) {
moveIndexToFirst(n);
return value[n];
}
return defRetValue;
}
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
int pos;
// The starting point.
if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH(k) & mask])) return defRetValue;
if (KEY_EQUALS_NOT_NULL(k, curr)) {
moveIndexToFirst(pos);
return value[pos];
}
// There's always an unused entry.
while(true) {
if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return defRetValue;
if (KEY_EQUALS_NOT_NULL(k, curr)) {
moveIndexToFirst(pos);
return value[pos];
}
}
}
/** Returns the value to which the given key is mapped; if the key is present, it is moved to the last position of the iteration order.
*
* @param k the key.
* @return the corresponding value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key.
*/
public VALUE_GENERIC_TYPE getAndMoveToLast(final KEY_GENERIC_TYPE k) {
if (KEY_EQUALS_NULL(k)) {
if (containsNullKey) {
moveIndexToLast(n);
return value[n];
}
return defRetValue;
}
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
int pos;
// The starting point.
if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH(k) & mask])) return defRetValue;
if (KEY_EQUALS_NOT_NULL(k, curr)) {
moveIndexToLast(pos);
return value[pos];
}
// There's always an unused entry.
while(true) {
if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return defRetValue;
if (KEY_EQUALS_NOT_NULL(k, curr)) {
moveIndexToLast(pos);
return value[pos];
}
}
}
/** Adds a pair to the map; if the key is already present, it is moved to the first position of the iteration order.
*
* @param k the key.
* @param v the value.
* @return the old value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key.
*/
public VALUE_GENERIC_TYPE putAndMoveToFirst(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v) {
int pos;
if (KEY_EQUALS_NULL(k)) {
if (containsNullKey) {
moveIndexToFirst(n);
return setValue(n, v);
}
containsNullKey = true;
pos = n;
}
else {
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
// The starting point.
if (! KEY_IS_NULL(curr = key[pos = KEY2INTHASH(k) & mask])) {
if (KEY_EQUALS_NOT_NULL(curr, k)) {
moveIndexToFirst(pos);
return setValue(pos, v);
}
while(! KEY_IS_NULL(curr = key[pos = (pos + 1) & mask]))
if (KEY_EQUALS_NOT_NULL(curr, k)) {
moveIndexToFirst(pos);
return setValue(pos, v);
}
}
}
key[pos] = k;
value[pos] = v;
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER(link[pos], -1, -1);
link[pos] = -1L;
}
else {
SET_PREV(link[first], pos);
SET_UPPER_LOWER(link[pos], -1, first);
first = pos;
}
if (size++ >= maxFill) rehash(arraySize(size, f));
if (ASSERTS) checkTable();
return defRetValue;
}
/** Adds a pair to the map; if the key is already present, it is moved to the last position of the iteration order.
*
* @param k the key.
* @param v the value.
* @return the old value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key.
*/
public VALUE_GENERIC_TYPE putAndMoveToLast(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v) {
int pos;
if (KEY_EQUALS_NULL(k)) {
if (containsNullKey) {
moveIndexToLast(n);
return setValue(n, v);
}
containsNullKey = true;
pos = n;
}
else {
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
// The starting point.
if (! KEY_IS_NULL(curr = key[pos = KEY2INTHASH(k) & mask])) {
if (KEY_EQUALS_NOT_NULL(curr, k)) {
moveIndexToLast(pos);
return setValue(pos, v);
}
while(! KEY_IS_NULL(curr = key[pos = (pos + 1) & mask]))
if (KEY_EQUALS_NOT_NULL(curr, k)) {
moveIndexToLast(pos);
return setValue(pos, v);
}
}
}
key[pos] = k;
value[pos] = v;
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER(link[pos], -1, -1);
link[pos] = -1L;
}
else {
SET_NEXT(link[last], pos);
SET_UPPER_LOWER(link[pos], last, -1);
last = pos;
}
if (size++ >= maxFill) rehash(arraySize(size, f));
if (ASSERTS) checkTable();
return defRetValue;
}
#endif
@Override
SUPPRESS_WARNINGS_KEY_UNCHECKED
public VALUE_GENERIC_TYPE GET_VALUE(final KEY_TYPE k) {
if (KEY_EQUALS_NULL(KEY_GENERIC_CAST k)) return containsNullKey ? value[n] : defRetValue;
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
int pos;
// The starting point.
if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH_CAST(k) & mask])) return defRetValue;
if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return value[pos];
// There's always an unused entry.
while(true) {
if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return defRetValue;
if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return value[pos];
}
}
@Override
SUPPRESS_WARNINGS_KEY_UNCHECKED
public boolean containsKey(final KEY_TYPE k) {
if (KEY_EQUALS_NULL(KEY_GENERIC_CAST k)) return containsNullKey;
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
int pos;
// The starting point.
if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH_CAST(k) & mask])) return false;
if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return true;
// There's always an unused entry.
while(true) {
if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return false;
if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return true;
}
}
@Override
public boolean containsValue(final VALUE_TYPE v) {
final VALUE_GENERIC_TYPE value[] = this.value;
final KEY_GENERIC_TYPE key[] = this.key;
if (containsNullKey && VALUE_EQUALS(value[n], v)) return true;
for(int i = n; i-- != 0;) if (! KEY_IS_NULL(key[i]) && VALUE_EQUALS(value[i], v)) return true;
return false;
}
/** {@inheritDoc} */
@Override
SUPPRESS_WARNINGS_KEY_UNCHECKED
public VALUE_GENERIC_TYPE getOrDefault(final KEY_TYPE k, final VALUE_GENERIC_TYPE defaultValue) {
if (KEY_EQUALS_NULL(KEY_GENERIC_CAST k)) return containsNullKey ? value[n] : defaultValue;
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
int pos;
// The starting point.
if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH_CAST(k) & mask])) return defaultValue;
if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return value[pos];
// There's always an unused entry.
while(true) {
if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return defaultValue;
if (KEY_EQUALS_NOT_NULL_CAST(k, curr)) return value[pos];
}
}
/** {@inheritDoc} */
@Override
public VALUE_GENERIC_TYPE putIfAbsent(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v) {
final int pos = find(k);
if (pos >= 0) return value[pos];
insert(-pos - 1, k, v);
return defRetValue;
}
/** {@inheritDoc} */
@Override
SUPPRESS_WARNINGS_KEY_UNCHECKED
public boolean remove(final KEY_TYPE k, final VALUE_TYPE v) {
if (KEY_EQUALS_NULL(KEY_GENERIC_CAST k)) {
if (containsNullKey && VALUE_EQUALS(v, value[n])) {
removeNullEntry();
return true;
}
return false;
}
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
int pos;
// The starting point.
if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH_CAST(k) & mask])) return false;
if (KEY_EQUALS_NOT_NULL_CAST(k, curr) && VALUE_EQUALS(v, value[pos])) {
removeEntry(pos);
return true;
}
while(true) {
if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return false;
if (KEY_EQUALS_NOT_NULL_CAST(k, curr) && VALUE_EQUALS(v, value[pos])) {
removeEntry(pos);
return true;
}
}
}
/** {@inheritDoc} */
@Override
public boolean replace(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE oldValue, final VALUE_GENERIC_TYPE v) {
final int pos = find(k);
if (pos < 0 || ! VALUE_EQUALS(oldValue, value[pos])) return false;
value[pos] = v;
return true;
}
/** {@inheritDoc} */
@Override
public VALUE_GENERIC_TYPE replace(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v) {
final int pos = find(k);
if (pos < 0) return defRetValue;
final VALUE_GENERIC_TYPE oldValue = value[pos];
value[pos] = v;
return oldValue;
}
#ifdef JDK_PRIMITIVE_FUNCTION
/** {@inheritDoc} */
@Override
public VALUE_GENERIC_TYPE computeIfAbsent(final KEY_GENERIC_TYPE k, final JDK_PRIMITIVE_FUNCTION KEY_SUPER_GENERIC_VALUE_EXTENDS_GENERIC mappingFunction) {
java.util.Objects.requireNonNull(mappingFunction);
final int pos = find(k);
if (pos >= 0) return value[pos];
final VALUE_GENERIC_TYPE newValue = VALUE_NARROWING(mappingFunction.JDK_PRIMITIVE_FUNCTION_APPLY(k));
insert(-pos -1, k, newValue);
return newValue;
}
#endif
/** {@inheritDoc} */
@Override
public VALUE_GENERIC_TYPE computeIfAbsent(final KEY_GENERIC_TYPE key, final FUNCTION KEY_SUPER_GENERIC_VALUE_EXTENDS_GENERIC mappingFunction) {
java.util.Objects.requireNonNull(mappingFunction);
final int pos = find(key);
if (pos >= 0) return value[pos];
if (!mappingFunction.containsKey(key)) return defRetValue;
final VALUE_GENERIC_TYPE newValue = mappingFunction.GET_VALUE(key);
insert(-pos -1, key, newValue);
return newValue;
}
#if KEYS_PRIMITIVE && VALUES_PRIMITIVE
/** {@inheritDoc} */
@Override
public VALUE_GENERIC_TYPE computeIfAbsentNullable(final KEY_GENERIC_TYPE k, final JDK_KEY_TO_GENERIC_FUNCTION extends VALUE_GENERIC_CLASS> mappingFunction) {
java.util.Objects.requireNonNull(mappingFunction);
final int pos = find(k);
if (pos >= 0) return value[pos];
final VALUE_GENERIC_CLASS newValue = mappingFunction.apply(k);
if (newValue == null) return defRetValue;
final VALUE_GENERIC_TYPE v = VALUE_CLASS2TYPE(newValue);
insert(-pos - 1, k, v);
return v;
}
#endif
/** {@inheritDoc} */
@Override
public VALUE_GENERIC_TYPE COMPUTE_IF_PRESENT(final KEY_GENERIC_TYPE k, final java.util.function.BiFunction super KEY_GENERIC_CLASS, ? super VALUE_GENERIC_CLASS, ? extends VALUE_GENERIC_CLASS> remappingFunction) {
java.util.Objects.requireNonNull(remappingFunction);
final int pos = find(k);
if (pos < 0) return defRetValue;
final VALUE_GENERIC_CLASS newValue = remappingFunction.apply(KEY2OBJ(k), VALUE2OBJ(value[pos]));
if (newValue == null) {
if (KEY_EQUALS_NULL(k)) removeNullEntry();
else removeEntry(pos);
return defRetValue;
}
return value[pos] = VALUE_CLASS2TYPE(newValue);
}
/** {@inheritDoc} */
@Override
public VALUE_GENERIC_TYPE COMPUTE(final KEY_GENERIC_TYPE k, final java.util.function.BiFunction super KEY_GENERIC_CLASS, ? super VALUE_GENERIC_CLASS, ? extends VALUE_GENERIC_CLASS> remappingFunction) {
java.util.Objects.requireNonNull(remappingFunction);
final int pos = find(k);
final VALUE_GENERIC_CLASS newValue = remappingFunction.apply(KEY2OBJ(k), pos >= 0 ? VALUE2OBJ(value[pos]) : null);
if (newValue == null) {
if (pos >= 0) {
if (KEY_EQUALS_NULL(k)) removeNullEntry();
else removeEntry(pos);
}
return defRetValue;
}
VALUE_GENERIC_TYPE newVal = VALUE_CLASS2TYPE(newValue);
if (pos < 0) {
insert(-pos - 1, k, newVal);
return newVal;
}
return value[pos] = newVal;
}
/** {@inheritDoc} */
@Override
public VALUE_GENERIC_TYPE merge(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v, final java.util.function.BiFunction super VALUE_GENERIC_CLASS, ? super VALUE_GENERIC_CLASS, ? extends VALUE_GENERIC_CLASS> remappingFunction) {
java.util.Objects.requireNonNull(remappingFunction);
final int pos = find(k);
#if VALUES_PRIMITIVE
if (pos < 0) {
#else
if (pos < 0 || value[pos] == null) {
if (v == null) return defRetValue;
#endif
insert(-pos - 1, k, v);
return v;
}
final VALUE_GENERIC_CLASS newValue = remappingFunction.apply(VALUE2OBJ(value[pos]), VALUE2OBJ(v));
if (newValue == null) {
if (KEY_EQUALS_NULL(k)) removeNullEntry();
else removeEntry(pos);
return defRetValue;
}
return value[pos] = VALUE_CLASS2TYPE(newValue);
}
/* Removes all elements from this map.
*
*
To increase object reuse, this method does not change the table size.
* If you want to reduce the table size, you must use {@link #trim()}.
*
*/
@Override
public void clear() {
if (size == 0) return;
size = 0;
containsNullKey = false;
Arrays.fill(key, KEY_NULL);
#if VALUES_REFERENCE
Arrays.fill(value, null);
#endif
#ifdef Linked
first = last = -1;
#endif
}
@Override
public int size() {
return size;
}
@Override
public boolean isEmpty() {
return size == 0;
}
/** The entry class for a hash map does not record key and value, but
* rather the position in the hash table of the corresponding entry. This
* is necessary so that calls to {@link java.util.Map.Entry#setValue(Object)} are reflected in
* the map */
final class MapEntry implements MAP.Entry KEY_VALUE_GENERIC, Map.Entry, PAIR KEY_VALUE_GENERIC {
// The table index this entry refers to, or -1 if this entry has been deleted.
int index;
MapEntry(final int index) {
this.index = index;
}
MapEntry() {}
@Override
public KEY_GENERIC_TYPE ENTRY_GET_KEY() {
return key[index];
}
@Override
public KEY_GENERIC_TYPE PAIR_LEFT() {
return key[index];
}
@Override
public VALUE_GENERIC_TYPE ENTRY_GET_VALUE() {
return value[index];
}
@Override
public VALUE_GENERIC_TYPE PAIR_RIGHT() {
return value[index];
}
@Override
public VALUE_GENERIC_TYPE setValue(final VALUE_GENERIC_TYPE v) {
final VALUE_GENERIC_TYPE oldValue = value[index];
value[index] = v;
return oldValue;
}
@Override
public PAIR KEY_VALUE_GENERIC right(final VALUE_GENERIC_TYPE v) {
value[index] = v;
return this;
}
#if KEYS_PRIMITIVE
/** {@inheritDoc}
* @deprecated Please use the corresponding type-specific method instead. */
@Deprecated
@Override
public KEY_GENERIC_CLASS getKey() {
return KEY2OBJ(key[index]);
}
#endif
#if VALUES_PRIMITIVE
/** {@inheritDoc}
* @deprecated Please use the corresponding type-specific method instead. */
@Deprecated
@Override
public VALUE_GENERIC_CLASS getValue() {
return VALUE2OBJ(value[index]);
}
/** {@inheritDoc}
* @deprecated Please use the corresponding type-specific method instead. */
@Deprecated
@Override
public VALUE_GENERIC_CLASS setValue(final VALUE_GENERIC_CLASS v) {
return VALUE2OBJ(setValue(VALUE_CLASS2TYPE(v)));
}
#endif
@SuppressWarnings("unchecked")
@Override
public boolean equals(final Object o) {
if (!(o instanceof Map.Entry)) return false;
Map.Entry e = (Map.Entry)o;
return KEY_EQUALS(key[index], KEY_CLASS2TYPE(e.getKey())) && VALUE_EQUALS(value[index], VALUE_CLASS2TYPE(e.getValue()));
}
@Override
public int hashCode() {
return KEY2JAVAHASH(key[index]) ^ VALUE2JAVAHASH(value[index]);
}
@Override
public String toString() {
return key[index] + "=>" + value[index];
}
}
#ifdef Linked
/** Modifies the {@link #link} vector so that the given entry is removed.
* This method will complete in constant time.
*
* @param i the index of an entry.
*/
protected void fixPointers(final int i) {
if (size == 0) {
first = last = -1;
return;
}
if (first == i) {
first = GET_NEXT(link[i]);
if (0 <= first) {
// Special case of SET_PREV(link[first], -1)
link[first] |= (-1 & 0xFFFFFFFFL) << 32;
}
return;
}
if (last == i) {
last = GET_PREV(link[i]);
if (0 <= last) {
// Special case of SET_NEXT(link[last], -1)
link[last] |= -1 & 0xFFFFFFFFL;
}
return;
}
final long linki = link[i];
final int prev = GET_PREV(linki);
final int next = GET_NEXT(linki);
COPY_NEXT(link[prev], linki);
COPY_PREV(link[next], linki);
}
/** Modifies the {@link #link} vector for a shift from s to d.
* This method will complete in constant time.
*
* @param s the source position.
* @param d the destination position.
*/
protected void fixPointers(int s, int d) {
if (size == 1) {
first = last = d;
// Special case of SET_UPPER_LOWER(link[d], -1, -1)
link[d] = -1L;
return;
}
if (first == s) {
first = d;
SET_PREV(link[GET_NEXT(link[s])], d);
link[d] = link[s];
return;
}
if (last == s) {
last = d;
SET_NEXT(link[GET_PREV(link[s])], d);
link[d] = link[s];
return;
}
final long links = link[s];
final int prev = GET_PREV(links);
final int next = GET_NEXT(links);
SET_NEXT(link[prev], d);
SET_PREV(link[next], d);
link[d] = links;
}
/** Returns the first key of this map in iteration order.
*
* @return the first key in iteration order.
*/
@Override
public KEY_GENERIC_TYPE FIRST_KEY() {
if (size == 0) throw new NoSuchElementException();
return key[first];
}
/** Returns the last key of this map in iteration order.
*
* @return the last key in iteration order.
*/
@Override
public KEY_GENERIC_TYPE LAST_KEY() {
if (size == 0) throw new NoSuchElementException();
return key[last];
}
/** {@inheritDoc}
* @implSpec This implementation just throws an {@link UnsupportedOperationException}.*/
@Override
public SORTED_MAP KEY_VALUE_GENERIC tailMap(KEY_GENERIC_TYPE from) { throw new UnsupportedOperationException(); }
/** {@inheritDoc}
* @implSpec This implementation just throws an {@link UnsupportedOperationException}.*/
@Override
public SORTED_MAP KEY_VALUE_GENERIC headMap(KEY_GENERIC_TYPE to) { throw new UnsupportedOperationException(); }
/** {@inheritDoc}
* @implSpec This implementation just throws an {@link UnsupportedOperationException}.*/
@Override
public SORTED_MAP KEY_VALUE_GENERIC subMap(KEY_GENERIC_TYPE from, KEY_GENERIC_TYPE to) { throw new UnsupportedOperationException(); }
/** {@inheritDoc}
* @implSpec This implementation just returns {@code null}.*/
@Override
public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return null; }
/** A list iterator over a linked map.
*
*
This class provides a list iterator over a linked hash map. The constructor runs in constant time.
*/
private abstract class MapIterator {
/** The entry that will be returned by the next call to {@link java.util.ListIterator#previous()} (or {@code null} if no previous entry exists). */
int prev = -1;
/** The entry that will be returned by the next call to {@link java.util.ListIterator#next()} (or {@code null} if no next entry exists). */
int next = -1;
/** The last entry that was returned (or -1 if we did not iterate or used {@link java.util.Iterator#remove()}). */
int curr = -1;
/** The current index (in the sense of a {@link java.util.ListIterator}). Note that this value is not meaningful when this iterator has been created using the nonempty constructor.*/
int index = -1;
@SuppressWarnings("unused")
abstract void acceptOnIndex(final ConsumerType action, final int index);
protected MapIterator() {
next = first;
index = 0;
}
private MapIterator(final KEY_GENERIC_TYPE from) {
if (KEY_EQUALS_NULL(from)) {
if (OPEN_HASH_MAP.this.containsNullKey) {
next = GET_NEXT(link[n]);
prev = n;
return;
}
else throw new NoSuchElementException("The key " + from + " does not belong to this map.");
}
if (KEY_EQUALS(key[last], from)) {
prev = last;
index = size;
return;
}
// The starting point.
int pos = KEY2INTHASH(from) & mask;
// There's always an unused entry.
while(! KEY_IS_NULL(key[pos])) {
if (KEY_EQUALS_NOT_NULL(key[pos], from)) {
// Note: no valid index known.
next = GET_NEXT(link[pos]);
prev = pos;
return;
}
pos = (pos + 1) & mask;
}
throw new NoSuchElementException("The key " + from + " does not belong to this map.");
}
public boolean hasNext() { return next != -1; }
public boolean hasPrevious() { return prev != -1; }
private final void ensureIndexKnown() {
if (index >= 0) return;
if (prev == -1) {
index = 0;
return;
}
if (next == -1) {
index = size;
return;
}
int pos = first;
index = 1;
while(pos != prev) {
pos = GET_NEXT(link[pos]);
index++;
}
}
public int nextIndex() {
ensureIndexKnown();
return index;
}
public int previousIndex() {
ensureIndexKnown();
return index - 1;
}
public int nextEntry() {
if (! hasNext()) throw new NoSuchElementException();
curr = next;
next = GET_NEXT(link[curr]);
prev = curr;
if (index >= 0) index++;
return curr;
}
public int previousEntry() {
if (! hasPrevious()) throw new NoSuchElementException();
curr = prev;
prev = GET_PREV(link[curr]);
next = curr;
if (index >= 0) index--;
return curr;
}
public void forEachRemaining(final ConsumerType action) {
while (hasNext()) {
curr = next;
next = GET_NEXT(link[curr]);
prev = curr;
if (index >= 0) index++;
acceptOnIndex(action, curr);
}
}
public void remove() {
ensureIndexKnown();
if (curr == -1) throw new IllegalStateException();
if (curr == prev) {
/* If the last operation was a next(), we are removing an entry that preceeds
the current index, and thus we must decrement it. */
index--;
prev = GET_PREV(link[curr]);
}
else
next = GET_NEXT(link[curr]);
size--;
/* Now we manually fix the pointers. Because of our knowledge of next
and prev, this is going to be faster than calling fixPointers(). */
if (prev == -1) first = next;
else
SET_NEXT(link[prev], next);
if (next == -1) last = prev;
else
SET_PREV(link[next], prev);
int last, slot, pos = curr;
curr = -1;
if (pos == n) {
OPEN_HASH_MAP.this.containsNullKey = false;
#if KEYS_REFERENCE
key[n] = null;
#endif
#if VALUES_REFERENCE
value[n] = null;
#endif
}
else {
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = OPEN_HASH_MAP.this.key;
// We have to horribly duplicate the shiftKeys() code because we need to update next/prev.
for(;;) {
pos = ((last = pos) + 1) & mask;
for(;;) {
if (KEY_IS_NULL(curr = key[pos])) {
key[last] = KEY_NULL;
#if VALUES_REFERENCE
value[last] = null;
#endif
return;
}
slot = KEY2INTHASH(curr) & mask;
if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break;
pos = (pos + 1) & mask;
}
key[last] = curr;
value[last] = value[pos];
if (next == pos) next = last;
if (prev == pos) prev = last;
fixPointers(pos, last);
}
}
}
public int skip(final int n) {
int i = n;
while(i-- != 0 && hasNext()) nextEntry();
return n - i - 1;
}
public int back(final int n) {
int i = n;
while(i-- != 0 && hasPrevious()) previousEntry();
return n - i - 1;
}
public void set(@SuppressWarnings("unused") MAP.Entry KEY_VALUE_GENERIC ok) {
throw new UnsupportedOperationException();
}
public void add(@SuppressWarnings("unused") MAP.Entry KEY_VALUE_GENERIC ok) {
throw new UnsupportedOperationException();
}
}
private final class EntryIterator extends MapIterator> implements ObjectListIterator {
private MapEntry entry;
public EntryIterator() {}
public EntryIterator(KEY_GENERIC_TYPE from) {
super(from);
}
// forEachRemaining inherited from MapIterator superclass.
@Override
final void acceptOnIndex(final Consumer super MAP.Entry KEY_VALUE_GENERIC> action, final int index) {
action.accept(new MapEntry(index));
}
@Override
public MapEntry next() {
return entry = new MapEntry(nextEntry());
}
@Override
public MapEntry previous() {
return entry = new MapEntry(previousEntry());
}
@Override
public void remove() {
super.remove();
entry.index = -1; // You cannot use a deleted entry.
}
}
private final class FastEntryIterator extends MapIterator> implements ObjectListIterator {
final MapEntry entry = new MapEntry();
public FastEntryIterator() {}
public FastEntryIterator(KEY_GENERIC_TYPE from) {
super(from);
}
// forEachRemaining inherited from MapIterator superclass.
@Override
final void acceptOnIndex(final Consumer super MAP.Entry KEY_VALUE_GENERIC> action, final int index) {
entry.index = index;
action.accept(entry);
}
@Override
public MapEntry next() {
entry.index = nextEntry();
return entry;
}
@Override
public MapEntry previous() {
entry.index = previousEntry();
return entry;
}
}
#else
/** An iterator over a hash map. */
private abstract class MapIterator {
/** The index of the last entry returned, if positive or zero; initially, {@link #n}. If negative, the last
entry returned was that of the key of index {@code - pos - 1} from the {@link #wrapped} list. */
int pos = n;
/** The index of the last entry that has been returned (more precisely, the value of {@link #pos} if {@link #pos} is positive,
or {@link Integer#MIN_VALUE} if {@link #pos} is negative). It is -1 if either
we did not return an entry yet, or the last returned entry has been removed. */
int last = -1;
/** A downward counter measuring how many entries must still be returned. */
int c = size;
/** A boolean telling us whether we should return the entry with the null key. */
boolean mustReturnNullKey = OPEN_HASH_MAP.this.containsNullKey;
/** A lazily allocated list containing keys of entries that have wrapped around the table because of removals. */
ARRAY_LIST KEY_GENERIC wrapped;
@SuppressWarnings("unused")
abstract void acceptOnIndex(final ConsumerType action, final int index);
public boolean hasNext() {
return c != 0;
}
public int nextEntry() {
if (! hasNext()) throw new NoSuchElementException();
c--;
if (mustReturnNullKey) {
mustReturnNullKey = false;
return last = n;
}
final KEY_GENERIC_TYPE key[] = OPEN_HASH_MAP.this.key;
for(;;) {
if (--pos < 0) {
// We are just enumerating elements from the wrapped list.
last = Integer.MIN_VALUE;
final KEY_GENERIC_TYPE k = wrapped.GET_KEY(- pos - 1);
int p = KEY2INTHASH(k) & mask;
while (! KEY_EQUALS_NOT_NULL(k, key[p])) p = (p + 1) & mask;
return p;
}
if (! KEY_IS_NULL(key[pos])) return last = pos;
}
}
public void forEachRemaining(final ConsumerType action) {
if (mustReturnNullKey) {
mustReturnNullKey = false;
acceptOnIndex(action, last = n);
c--;
}
final KEY_GENERIC_TYPE key[] = OPEN_HASH_MAP.this.key;
while (c != 0) {
if (--pos < 0) {
// We are just enumerating elements from the wrapped list.
last = Integer.MIN_VALUE;
final KEY_GENERIC_TYPE k = wrapped.GET_KEY(- pos - 1);
int p = KEY2INTHASH(k) & mask;
while (! KEY_EQUALS_NOT_NULL(k, key[p])) p = (p + 1) & mask;
acceptOnIndex(action, p);
c--;
} else if (! KEY_IS_NULL(key[pos])) {
acceptOnIndex(action, last = pos);
c--;
}
}
}
/** Shifts left entries with the specified hash code, starting at the specified position,
* and empties the resulting free entry.
*
* @param pos a starting position.
*/
private void shiftKeys(int pos) {
// Shift entries with the same hash.
int last, slot;
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = OPEN_HASH_MAP.this.key;
for(;;) {
pos = ((last = pos) + 1) & mask;
for(;;) {
if (KEY_IS_NULL(curr = key[pos])) {
key[last] = KEY_NULL;
#if VALUES_REFERENCE
value[last] = null;
#endif
return;
}
slot = KEY2INTHASH(curr) & mask;
if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break;
pos = (pos + 1) & mask;
}
if (pos < last) { // Wrapped entry.
if (wrapped == null) wrapped = new ARRAY_LIST KEY_GENERIC_DIAMOND(2);
wrapped.add(key[pos]);
}
key[last] = curr;
value[last] = value[pos];
}
}
public void remove() {
if (last == -1) throw new IllegalStateException();
if (last == n) {
containsNullKey = false;
#if KEYS_REFERENCE
key[n] = null;
#endif
#if VALUES_REFERENCE
value[n] = null;
#endif
}
else if (pos >= 0) shiftKeys(last);
else {
// We're removing wrapped entries.
#if KEYS_REFERENCE
OPEN_HASH_MAP.this.REMOVE_VALUE(wrapped.set(- pos - 1, null));
#else
OPEN_HASH_MAP.this.REMOVE_VALUE(wrapped.GET_KEY(- pos - 1));
#endif
last = -1; // Note that we must not decrement size
return;
}
size--;
last = -1; // You can no longer remove this entry.
if (ASSERTS) checkTable();
}
public int skip(final int n) {
int i = n;
while(i-- != 0 && hasNext()) nextEntry();
return n - i - 1;
}
}
private final class EntryIterator extends MapIterator> implements ObjectIterator {
private MapEntry entry;
@Override
public MapEntry next() {
return entry = new MapEntry(nextEntry());
}
// forEachRemaining inherited from MapIterator superclass.
@Override
final void acceptOnIndex(final Consumer super MAP.Entry KEY_VALUE_GENERIC> action, final int index) {
action.accept(entry = new MapEntry(index));
}
@Override
public void remove() {
super.remove();
entry.index = -1; // You cannot use a deleted entry.
}
}
private final class FastEntryIterator extends MapIterator> implements ObjectIterator {
private final MapEntry entry = new MapEntry();
@Override
public MapEntry next() {
entry.index = nextEntry();
return entry;
}
// forEachRemaining inherited from MapIterator superclass.
@Override
final void acceptOnIndex(final Consumer super MAP.Entry KEY_VALUE_GENERIC> action, final int index) {
entry.index = index;
action.accept(entry);
}
}
private abstract class MapSpliterator> {
/** The index (which bucket) of the next item to give to the action.
* Unlike {@link SetIterator}, this counts up instead of down.
*/
int pos = 0;
/** The maximum bucket (exclusive) to iterate to */
int max = n;
/** An upwards counter counting how many we have given */
int c = 0;
/** A boolean telling us whether we should return the null key. */
boolean mustReturnNull = OPEN_HASH_MAP.this.containsNullKey;
boolean hasSplit = false;
MapSpliterator() {}
MapSpliterator(int pos, int max, boolean mustReturnNull, boolean hasSplit) {
this.pos = pos;
this.max = max;
this.mustReturnNull = mustReturnNull;
this.hasSplit = hasSplit;
}
abstract void acceptOnIndex(final ConsumerType action, final int index);
abstract SplitType makeForSplit(int pos, int max, boolean mustReturnNull);
public boolean tryAdvance(final ConsumerType action) {
if (mustReturnNull) {
mustReturnNull = false;
++c;
acceptOnIndex(action, n);
return true;
}
final KEY_GENERIC_TYPE key[] = OPEN_HASH_MAP.this.key;
while (pos < max) {
if (! KEY_IS_NULL(key[pos])) {
++c;
acceptOnIndex(action, pos++);
return true;
}
++pos;
}
return false;
}
public void forEachRemaining(final ConsumerType action) {
if (mustReturnNull) {
mustReturnNull = false;
++c;
acceptOnIndex(action, n);
}
final KEY_GENERIC_TYPE key[] = OPEN_HASH_MAP.this.key;
while (pos < max) {
if (! KEY_IS_NULL(key[pos])) {
acceptOnIndex(action, pos);
++c;
}
++pos;
}
}
public long estimateSize() {
if (!hasSplit) {
// Root spliterator; we know how many are remaining.
return size - c;
} else {
// After we split, we can no longer know exactly how many we have (or at least not efficiently).
// (size / n) * (max - pos) aka currentTableDensity * numberOfBucketsLeft seems like a good estimate.
return Math.min(size - c, (long)(((double)realSize() / n) * (max - pos)) + (mustReturnNull ? 1 : 0));
}
}
public SplitType trySplit() {
if (pos >= max - 1) return null;
int retLen = (max - pos) >> 1;
if (retLen <= 1) return null;
int myNewPos = pos + retLen;
int retPos = pos;
int retMax = myNewPos;
// Since null is returned first, and the convention is that the returned split is the prefix of elements,
// the split will take care of returning null (if needed), and we won't return it anymore.
SplitType split = makeForSplit(retPos, retMax, mustReturnNull);
this.pos = myNewPos;
this.mustReturnNull = false;
this.hasSplit = true;
return split;
}
public long skip(long n) {
if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n);
if (n == 0) return 0;
long skipped = 0;
if (mustReturnNull) {
mustReturnNull = false;
++skipped;
--n;
}
final KEY_GENERIC_TYPE key[] = OPEN_HASH_MAP.this.key;
while (pos < max && n > 0) {
if (! KEY_IS_NULL(key[pos++])) {
++skipped;
--n;
}
}
return skipped;
}
}
private final class EntrySpliterator extends MapSpliterator, EntrySpliterator> implements ObjectSpliterator {
private static final int POST_SPLIT_CHARACTERISTICS = ObjectSpliterators.SET_SPLITERATOR_CHARACTERISTICS & ~java.util.Spliterator.SIZED;
EntrySpliterator() {}
EntrySpliterator(int pos, int max, boolean mustReturnNull, boolean hasSplit) {
super(pos, max, mustReturnNull, hasSplit);
}
@Override
public int characteristics() {
return hasSplit ? POST_SPLIT_CHARACTERISTICS : ObjectSpliterators.SET_SPLITERATOR_CHARACTERISTICS;
}
@Override
final void acceptOnIndex(final Consumer super MAP.Entry KEY_VALUE_GENERIC> action, final int index) {
action.accept(new MapEntry(index));
}
@Override
final EntrySpliterator makeForSplit(int pos, int max, boolean mustReturnNull) {
return new EntrySpliterator(pos, max, mustReturnNull, true);
}
}
#endif
#ifdef Linked
private final class MapEntrySet extends AbstractObjectSortedSet implements FastSortedEntrySet KEY_VALUE_GENERIC {
private static final int SPLITERATOR_CHARACTERISTICS = ObjectSpliterators.SET_SPLITERATOR_CHARACTERISTICS | java.util.Spliterator.ORDERED;
@Override
public ObjectBidirectionalIterator iterator() { return new EntryIterator(); }
/** {@inheritDoc}
*
* There isn't a way to split efficiently while still preserving order for a linked data structure,
* so this implementation is just backed by the iterator. Thus, this spliterator is not well optimized
* for parallel streams.
*
*
Note, contrary to the specification of {@link java.util.SortedSet}, this spliterator does not,
* report {@link java.util.Spliterators.SORTED}. This is because iteration order is based on insertion
* order, not natural ordering.
*/
@Override
public ObjectSpliterator spliterator() {
return ObjectSpliterators.asSpliterator(
iterator(), it.unimi.dsi.fastutil.Size64.sizeOf(OPEN_HASH_MAP.this), SPLITERATOR_CHARACTERISTICS);
}
@Override
public Comparator super MAP.Entry KEY_VALUE_GENERIC> comparator() { return null; }
@Override
public ObjectSortedSet subSet(MAP.Entry KEY_VALUE_GENERIC fromElement, MAP.Entry KEY_VALUE_GENERIC toElement) { throw new UnsupportedOperationException(); }
@Override
public ObjectSortedSet headSet(MAP.Entry KEY_VALUE_GENERIC toElement) { throw new UnsupportedOperationException(); }
@Override
public ObjectSortedSet tailSet(MAP.Entry KEY_VALUE_GENERIC fromElement) { throw new UnsupportedOperationException(); }
@Override
public MAP.Entry KEY_VALUE_GENERIC first() {
if (size == 0) throw new NoSuchElementException();
return new MapEntry(OPEN_HASH_MAP.this.first);
}
@Override
public MAP.Entry KEY_VALUE_GENERIC last() {
if (size == 0) throw new NoSuchElementException();
return new MapEntry(OPEN_HASH_MAP.this.last);
}
#else
private final class MapEntrySet extends AbstractObjectSet implements FastEntrySet KEY_VALUE_GENERIC {
@Override
public ObjectIterator iterator() { return new EntryIterator(); }
@Override
public ObjectIterator fastIterator() { return new FastEntryIterator(); }
@Override
public ObjectSpliterator spliterator() { return new EntrySpliterator(); }
//
#endif
@Override
SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED
public boolean contains(final Object o) {
if (!(o instanceof Map.Entry)) return false;
final Map.Entry,?> e = (Map.Entry,?>)o;
#if KEYS_PRIMITIVE
if (e.getKey() == null || ! (e.getKey() instanceof KEY_CLASS)) return false;
#endif
#if VALUES_PRIMITIVE
if (e.getValue() == null || ! (e.getValue() instanceof VALUE_CLASS)) return false;
#endif
final KEY_GENERIC_TYPE k = KEY_OBJ2TYPE(KEY_GENERIC_CAST e.getKey());
final VALUE_GENERIC_TYPE v = VALUE_OBJ2TYPE(VALUE_GENERIC_CAST e.getValue());
if (KEY_EQUALS_NULL(k)) return OPEN_HASH_MAP.this.containsNullKey && VALUE_EQUALS(value[n], v);
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = OPEN_HASH_MAP.this.key;
int pos;
// The starting point.
if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH(k) & mask])) return false;
if (KEY_EQUALS_NOT_NULL(k, curr)) return VALUE_EQUALS(value[pos], v);
// There's always an unused entry.
while(true) {
if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return false;
if (KEY_EQUALS_NOT_NULL(k, curr)) return VALUE_EQUALS(value[pos], v);
}
}
@Override
SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED
public boolean remove(final Object o) {
if (!(o instanceof Map.Entry)) return false;
final Map.Entry,?> e = (Map.Entry,?>)o;
#if KEYS_PRIMITIVE
if (e.getKey() == null || ! (e.getKey() instanceof KEY_CLASS)) return false;
#endif
#if VALUES_PRIMITIVE
if (e.getValue() == null || ! (e.getValue() instanceof VALUE_CLASS)) return false;
#endif
final KEY_GENERIC_TYPE k = KEY_OBJ2TYPE(KEY_GENERIC_CAST e.getKey());
final VALUE_GENERIC_TYPE v = VALUE_OBJ2TYPE(VALUE_GENERIC_CAST e.getValue());
if (KEY_EQUALS_NULL(k)) {
if (containsNullKey && VALUE_EQUALS(value[n], v)) {
removeNullEntry();
return true;
}
return false;
}
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = OPEN_HASH_MAP.this.key;
int pos;
// The starting point.
if (KEY_IS_NULL(curr = key[pos = KEY2INTHASH(k) & mask])) return false;
if (KEY_EQUALS_NOT_NULL(curr, k)) {
if (VALUE_EQUALS(value[pos], v)) {
removeEntry(pos);
return true;
}
return false;
}
while(true) {
if (KEY_IS_NULL(curr = key[pos = (pos + 1) & mask])) return false;
if (KEY_EQUALS_NOT_NULL(curr, k)) {
if (VALUE_EQUALS(value[pos], v)) {
removeEntry(pos);
return true;
}
}
}
}
@Override
public int size() {
return size;
}
@Override
public void clear() {
OPEN_HASH_MAP.this.clear();
}
#ifdef Linked
/** Returns a type-specific list iterator on the elements in this set, starting from a given element of the set.
* Please see the class documentation for implementation details.
*
* @param from an element to start from.
* @return a type-specific list iterator starting at the given element.
* @throws IllegalArgumentException if {@code from} does not belong to the set.
*/
@Override
public ObjectListIterator iterator(final MAP.Entry KEY_VALUE_GENERIC from) {
return new EntryIterator(from.ENTRY_GET_KEY());
}
/** Returns a type-specific fast list iterator on the elements in this set, starting from the first element.
* Please see the class documentation for implementation details.
*
* @return a type-specific list iterator starting at the first element.
*/
@Override
public ObjectListIterator fastIterator() {
return new FastEntryIterator();
}
/** Returns a type-specific fast list iterator on the elements in this set, starting from a given element of the set.
* Please see the class documentation for implementation details.
*
* @param from an element to start from.
* @return a type-specific list iterator starting at the given element.
* @throws IllegalArgumentException if {@code from} does not belong to the set.
*/
@Override
public ObjectListIterator fastIterator(final MAP.Entry KEY_VALUE_GENERIC from) {
return new FastEntryIterator(from.ENTRY_GET_KEY());
}
/** {@inheritDoc} */
@Override
public void forEach(final Consumer super MAP.Entry KEY_VALUE_GENERIC> consumer) {
for(int i = size, curr, next = first; i-- != 0;) {
curr = next;
next = GET_NEXT(link[curr]);
consumer.accept(new ABSTRACT_MAP.BasicEntry KEY_VALUE_GENERIC(key[curr], value[curr]));
}
}
/** {@inheritDoc} */
@Override
public void fastForEach(final Consumer super MAP.Entry KEY_VALUE_GENERIC> consumer) {
final ABSTRACT_MAP.BasicEntry KEY_VALUE_GENERIC entry = new ABSTRACT_MAP.BasicEntry KEY_VALUE_GENERIC_DIAMOND();
for(int i = size, curr, next = first; i-- != 0;) {
curr = next;
next = GET_NEXT(link[curr]);
entry.key = key[curr];
entry.value = value[curr];
consumer.accept(entry);
}
}
#else
/** {@inheritDoc} */
@Override
public void forEach(final Consumer super MAP.Entry KEY_VALUE_GENERIC> consumer) {
if (containsNullKey) consumer.accept(new ABSTRACT_MAP.BasicEntry KEY_VALUE_GENERIC(key[n], value[n]));
for(int pos = n; pos-- != 0;)
if (! KEY_IS_NULL(key[pos])) consumer.accept(new ABSTRACT_MAP.BasicEntry KEY_VALUE_GENERIC(key[pos], value[pos]));
}
/** {@inheritDoc} */
@Override
public void fastForEach(final Consumer super MAP.Entry KEY_VALUE_GENERIC> consumer) {
final ABSTRACT_MAP.BasicEntry KEY_VALUE_GENERIC entry = new ABSTRACT_MAP.BasicEntry KEY_VALUE_GENERIC_DIAMOND();
if (containsNullKey) {
entry.key = key[n];
entry.value = value[n];
consumer.accept(entry);
}
for(int pos = n; pos-- != 0;)
if (! KEY_IS_NULL(key[pos])) {
entry.key = key[pos];
entry.value = value[pos];
consumer.accept(entry);
}
}
#endif
}
#ifdef Linked
@Override
public FastSortedEntrySet KEY_VALUE_GENERIC ENTRYSET() {
if (entries == null) entries = new MapEntrySet();
#else
@Override
public FastEntrySet KEY_VALUE_GENERIC ENTRYSET() {
if (entries == null) entries = new MapEntrySet();
#endif
return entries;
}
/** An iterator on keys.
*
* We simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods
* (and possibly their type-specific counterparts) so that they return keys
* instead of entries.
*/
#ifdef Linked
private final class KeyIterator extends MapIterator implements KEY_LIST_ITERATOR KEY_GENERIC {
public KeyIterator(final KEY_GENERIC_TYPE k) { super(k); }
@Override
public KEY_GENERIC_TYPE PREV_KEY() { return key[previousEntry()]; }
#else
private final class KeyIterator extends MapIterator implements KEY_ITERATOR KEY_GENERIC {
#endif
public KeyIterator() { super(); }
// forEachRemaining inherited from MapIterator superclass.
// Despite the superclass declared with generics, the way Java inherits and generates bridge methods avoids the boxing/unboxing
@Override
final void acceptOnIndex(final METHOD_ARG_KEY_CONSUMER action, final int index) {
action.accept(key[index]);
}
@Override
public KEY_GENERIC_TYPE NEXT_KEY() { return key[nextEntry()]; }
}
#ifndef Linked
private final class KeySpliterator extends MapSpliterator implements KEY_SPLITERATOR KEY_GENERIC {
private static final int POST_SPLIT_CHARACTERISTICS = SPLITERATORS.SET_SPLITERATOR_CHARACTERISTICS & ~java.util.Spliterator.SIZED;
KeySpliterator() {}
KeySpliterator(int pos, int max, boolean mustReturnNull, boolean hasSplit) {
super(pos, max, mustReturnNull, hasSplit);
}
@Override
public int characteristics() {
return hasSplit ? POST_SPLIT_CHARACTERISTICS : SPLITERATORS.SET_SPLITERATOR_CHARACTERISTICS;
}
@Override
final void acceptOnIndex(final METHOD_ARG_KEY_CONSUMER action, final int index) {
action.accept(key[index]);
}
@Override
final KeySpliterator makeForSplit(int pos, int max, boolean mustReturnNull) {
return new KeySpliterator(pos, max, mustReturnNull, true);
}
}
#endif
#ifdef Linked
private final class KeySet extends ABSTRACT_SORTED_SET KEY_GENERIC {
private static final int SPLITERATOR_CHARACTERISTICS = SPLITERATORS.SET_SPLITERATOR_CHARACTERISTICS | java.util.Spliterator.ORDERED;
@Override
public KEY_LIST_ITERATOR KEY_GENERIC iterator(final KEY_GENERIC_TYPE from) { return new KeyIterator(from); }
@Override
public KEY_LIST_ITERATOR KEY_GENERIC iterator() { return new KeyIterator(); }
/** {@inheritDoc}
* @see EntrySet#spliterator()
*/
@Override
public KEY_SPLITERATOR KEY_GENERIC spliterator() {
return SPLITERATORS.asSpliterator(
iterator(), it.unimi.dsi.fastutil.Size64.sizeOf(OPEN_HASH_MAP.this), SPLITERATOR_CHARACTERISTICS);
}
/** {@inheritDoc} */
@Override
public void forEach(final METHOD_ARG_KEY_CONSUMER consumer) {
for(int i = size, curr, next = first; i-- != 0;) {
curr = next;
next = GET_NEXT(link[curr]);
consumer.accept(key[curr]);
}
}
#else
private final class KeySet extends ABSTRACT_SET KEY_GENERIC {
@Override
public KEY_ITERATOR KEY_GENERIC iterator() { return new KeyIterator(); }
@Override
public KEY_SPLITERATOR KEY_GENERIC spliterator() { return new KeySpliterator(); }
/** {@inheritDoc} */
@Override
public void forEach(final METHOD_ARG_KEY_CONSUMER consumer) {
if (containsNullKey) consumer.accept(key[n]);
for(int pos = n; pos-- != 0;) {
final KEY_GENERIC_TYPE k = key[pos];
if (! KEY_IS_NULL(k)) consumer.accept(k);
}
}
#endif
@Override
public int size() { return size; }
@Override
public boolean contains(KEY_TYPE k) { return containsKey(k); }
@Override
public boolean remove(KEY_TYPE k) {
final int oldSize = size;
OPEN_HASH_MAP.this.REMOVE_VALUE(k);
return size != oldSize;
}
@Override
public void clear() { OPEN_HASH_MAP.this.clear();}
#ifdef Linked
@Override
public KEY_GENERIC_TYPE FIRST() {
if (size == 0) throw new NoSuchElementException();
return key[first];
}
@Override
public KEY_GENERIC_TYPE LAST() {
if (size == 0) throw new NoSuchElementException();
return key[last];
}
@Override
public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return null; }
@Override
public SORTED_SET KEY_GENERIC tailSet(KEY_GENERIC_TYPE from) { throw new UnsupportedOperationException(); }
@Override
public SORTED_SET KEY_GENERIC headSet(KEY_GENERIC_TYPE to) { throw new UnsupportedOperationException(); }
@Override
public SORTED_SET KEY_GENERIC subSet(KEY_GENERIC_TYPE from, KEY_GENERIC_TYPE to) { throw new UnsupportedOperationException(); }
#endif
}
#ifdef Linked
@Override
public SORTED_SET KEY_GENERIC keySet() {
#else
@Override
public SET KEY_GENERIC keySet() {
#endif
if (keys == null) keys = new KeySet();
return keys;
}
/** An iterator on values.
*
* We simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods
* (and possibly their type-specific counterparts) so that they return values
* instead of entries.
*/
#ifdef Linked
private final class ValueIterator extends MapIterator implements VALUE_LIST_ITERATOR VALUE_GENERIC {
@Override
public VALUE_GENERIC_TYPE PREV_VALUE() { return value[previousEntry()]; }
#else
private final class ValueIterator extends MapIterator implements VALUE_ITERATOR VALUE_GENERIC {
#endif
public ValueIterator() { super(); }
// forEachRemaining inherited from MapIterator superclass.
// Despite the superclass declared with generics, the way Java inherits and generates bridge methods avoids the boxing/unboxing
@Override
final void acceptOnIndex(final METHOD_ARG_VALUE_CONSUMER action, final int index) {
action.accept(value[index]);
}
@Override
public VALUE_GENERIC_TYPE NEXT_VALUE() { return value[nextEntry()]; }
}
#ifndef Linked
private final class ValueSpliterator extends MapSpliterator implements VALUE_SPLITERATOR VALUE_GENERIC {
private static final int POST_SPLIT_CHARACTERISTICS = VALUE_SPLITERATORS.COLLECTION_SPLITERATOR_CHARACTERISTICS & ~java.util.Spliterator.SIZED;
ValueSpliterator() {}
ValueSpliterator(int pos, int max, boolean mustReturnNull, boolean hasSplit) {
super(pos, max, mustReturnNull, hasSplit);
}
@Override
public int characteristics() {
return hasSplit ? POST_SPLIT_CHARACTERISTICS : VALUE_SPLITERATORS.COLLECTION_SPLITERATOR_CHARACTERISTICS;
}
@Override
final void acceptOnIndex(final METHOD_ARG_VALUE_CONSUMER action, final int index) {
action.accept(value[index]);
}
@Override
final ValueSpliterator makeForSplit(int pos, int max, boolean mustReturnNull) {
return new ValueSpliterator(pos, max, mustReturnNull, true);
}
}
#endif
@Override
public VALUE_COLLECTION VALUE_GENERIC values() {
if (values == null) values = new VALUE_ABSTRACT_COLLECTION VALUE_GENERIC() {
#ifdef Linked
private static final int SPLITERATOR_CHARACTERISTICS = VALUE_SPLITERATORS.COLLECTION_SPLITERATOR_CHARACTERISTICS | java.util.Spliterator.ORDERED;
#endif
@Override
public VALUE_ITERATOR VALUE_GENERIC iterator() { return new ValueIterator(); }
#ifdef Linked
/** {@inheritDoc}
* @see EntrySet#spliterator()
*/
@Override
public VALUE_SPLITERATOR VALUE_GENERIC spliterator() {
return VALUE_SPLITERATORS.asSpliterator(
iterator(), it.unimi.dsi.fastutil.Size64.sizeOf(OPEN_HASH_MAP.this), SPLITERATOR_CHARACTERISTICS);
}
/** {@inheritDoc} */
@Override
public void forEach(final METHOD_ARG_VALUE_CONSUMER consumer) {
for(int i = size, curr, next = first; i-- != 0;) {
curr = next;
next = GET_NEXT(link[curr]);
consumer.accept(value[curr]);
}
}
#else
@Override
public VALUE_SPLITERATOR VALUE_GENERIC spliterator() { return new ValueSpliterator(); }
/** {@inheritDoc} */
@Override
public void forEach(final METHOD_ARG_VALUE_CONSUMER consumer) {
if (containsNullKey) consumer.accept(value[n]);
for(int pos = n; pos-- != 0;)
if (! KEY_IS_NULL(key[pos])) consumer.accept(value[pos]);
}
#endif
@Override
public int size() { return size; }
@Override
public boolean contains(VALUE_TYPE v) { return containsValue(v); }
@Override
public void clear() { OPEN_HASH_MAP.this.clear(); }
};
return values;
}
/** Rehashes the map, making the table as small as possible.
*
* This method rehashes the table to the smallest size satisfying the
* load factor. It can be used when the set will not be changed anymore, so
* to optimize access speed and size.
*
*
If the table size is already the minimum possible, this method
* does nothing.
*
* @return true if there was enough memory to trim the map.
* @see #trim(int)
*/
public boolean trim() {
return trim(size);
}
/** Rehashes this map if the table is too large.
*
*
Let N be the smallest table size that can hold
* max(n,{@link #size()})
entries, still satisfying the load factor. If the current
* table size is smaller than or equal to N, this method does
* nothing. Otherwise, it rehashes this map in a table of size
* N.
*
*
This method is useful when reusing maps. {@linkplain #clear() Clearing a
* map} leaves the table size untouched. If you are reusing a map
* many times, you can call this method with a typical
* size to avoid keeping around a very large table just
* because of a few large transient maps.
*
* @param n the threshold for the trimming.
* @return true if there was enough memory to trim the map.
* @see #trim()
*/
public boolean trim(final int n) {
final int l = HashCommon.nextPowerOfTwo((int)Math.ceil(n / f));
if (l >= this.n || size > maxFill(l, f)) return true;
try {
rehash(l);
}
catch(OutOfMemoryError cantDoIt) { return false; }
return true;
}
/** Rehashes the map.
*
*
This method implements the basic rehashing strategy, and may be
* overridden by subclasses implementing different rehashing strategies (e.g.,
* disk-based rehashing). However, you should not override this method
* unless you understand the internal workings of this class.
*
* @param newN the new size
*/
SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED
protected void rehash(final int newN) {
final KEY_GENERIC_TYPE key[] = this.key;
final VALUE_GENERIC_TYPE value[] = this.value;
final int mask = newN - 1; // Note that this is used by the hashing macro
final KEY_GENERIC_TYPE newKey[] = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[newN + 1];
final VALUE_GENERIC_TYPE newValue[] = VALUE_GENERIC_ARRAY_CAST new VALUE_TYPE[newN + 1];
#ifdef Linked
int i = first, prev = -1, newPrev = -1, t, pos;
final long link[] = this.link;
final long newLink[] = new long[newN + 1];
first = -1;
for(int j = size; j-- != 0;) {
if (KEY_EQUALS_NULL(key[i])) pos = newN;
else {
pos = KEY2INTHASH(key[i]) & mask;
while (! KEY_IS_NULL(newKey[pos])) pos = (pos + 1) & mask;
}
newKey[pos] = key[i];
newValue[pos] = value[i];
if (prev != -1) {
SET_NEXT(newLink[newPrev], pos);
SET_PREV(newLink[pos], newPrev);
newPrev = pos;
}
else {
newPrev = first = pos;
// Special case of SET(newLink[pos], -1, -1);
newLink[pos] = -1L;
}
t = i;
i = GET_NEXT(link[i]);
prev = t;
}
this.link = newLink;
this.last = newPrev;
if (newPrev != -1)
// Special case of SET_NEXT(newLink[newPrev], -1);
newLink[newPrev] |= -1 & 0xFFFFFFFFL;
#else
int i = n, pos;
for(int j = realSize(); j-- != 0;) {
while(KEY_IS_NULL(key[--i]));
if (! KEY_IS_NULL(newKey[pos = KEY2INTHASH(key[i]) & mask]))
while (! KEY_IS_NULL(newKey[pos = (pos + 1) & mask]));
newKey[pos] = key[i];
newValue[pos] = value[i];
}
newValue[newN] = value[n];
#endif
n = newN;
this.mask = mask;
maxFill = maxFill(n, f);
this.key = newKey;
this.value = newValue;
}
/** Returns a deep copy of this map.
*
*
This method performs a deep copy of this hash map; the data stored in the
* map, however, is not cloned. Note that this makes a difference only for object keys.
*
* @return a deep copy of this map.
*/
@Override
SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED
public OPEN_HASH_MAP KEY_VALUE_GENERIC clone() {
OPEN_HASH_MAP KEY_VALUE_GENERIC c;
try {
c = (OPEN_HASH_MAP KEY_VALUE_GENERIC)super.clone();
}
catch(CloneNotSupportedException cantHappen) {
throw new InternalError();
}
c.keys = null;
c.values = null;
c.entries = null;
c.containsNullKey = containsNullKey;
c.key = key.clone();
c.value = value.clone();
#ifdef Linked
c.link = link.clone();
#endif
#ifdef Custom
c.strategy = strategy;
#endif
return c;
}
/** Returns a hash code for this map.
*
* This method overrides the generic method provided by the superclass.
* Since {@code equals()} is not overriden, it is important
* that the value returned by this method is the same value as
* the one returned by the overriden method.
*
* @return a hash code for this map.
*/
@Override
public int hashCode() {
int h = 0;
for(int j = realSize(), i = 0, t = 0; j-- != 0;) {
while(KEY_IS_NULL(key[i])) i++;
#if KEYS_REFERENCE
if (this != key[i])
#endif
t = KEY2JAVAHASH_NOT_NULL(key[i]);
#if VALUES_REFERENCE
if (this != value[i])
#endif
t ^= VALUE2JAVAHASH(value[i]);
h += t;
i++;
}
// Zero / null keys have hash zero.
if (containsNullKey) h += VALUE2JAVAHASH(value[n]);
return h;
}
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
final KEY_GENERIC_TYPE key[] = this.key;
final VALUE_GENERIC_TYPE value[] = this.value;
final EntryIterator i = new EntryIterator();
s.defaultWriteObject();
for(int j = size, e; j-- != 0;) {
e = i.nextEntry();
s.WRITE_KEY(key[e]);
s.WRITE_VALUE(value[e]);
}
}
SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED
private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
n = arraySize(size, f);
maxFill = maxFill(n, f);
mask = n - 1;
final KEY_GENERIC_TYPE key[] = this.key = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[n + 1];
final VALUE_GENERIC_TYPE value[] = this.value = VALUE_GENERIC_ARRAY_CAST new VALUE_TYPE[n + 1];
#ifdef Linked
final long link[] = this.link = new long[n + 1];
int prev = -1;
first = last = -1;
#endif
KEY_GENERIC_TYPE k;
VALUE_GENERIC_TYPE v;
for(int i = size, pos; i-- != 0;) {
k = KEY_GENERIC_CAST s.READ_KEY();
v = VALUE_GENERIC_CAST s.READ_VALUE();
if (KEY_EQUALS_NULL(k)) {
pos = n;
containsNullKey = true;
}
else {
pos = KEY2INTHASH(k) & mask;
while (! KEY_IS_NULL(key[pos])) pos = (pos + 1) & mask;
}
key[pos] = k;
value[pos] = v;
#ifdef Linked
if (first != -1) {
SET_NEXT(link[prev], pos);
SET_PREV(link[pos], prev);
prev = pos;
}
else {
prev = first = pos;
// Special case of SET_PREV(newLink[pos], -1);
link[pos] |= (-1L & 0xFFFFFFFFL) << 32;
}
#endif
}
#ifdef Linked
last = prev;
if (prev != -1)
// Special case of SET_NEXT(link[prev], -1);
link[prev] |= -1 & 0xFFFFFFFFL;
#endif
if (ASSERTS) checkTable();
}
#ifdef ASSERTS_CODE
private void checkTable() {
assert (n & -n) == n : "Table length is not a power of two: " + n;
assert n == key.length - 1;
int n = key.length - 1;
while(n-- != 0)
if (! KEY_IS_NULL(key[n]) && ! containsKey(key[n]))
throw new AssertionError("Hash table has key " + key[n] + " marked as occupied, but the key does not belong to the table");
#if KEYS_PRIMITIVE
java.util.HashSet s = new java.util.HashSet ();
#else
java.util.HashSet