All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.fastutil.bytes.BytePredicate Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists, and queues with a small memory footprint and fast operations; it provides also big (64-bit) arrays, sets, and lists, sorting algorithms, fast, practical I/O classes for binary and text files, and facilities for memory mapping large files. This jar (fastutil-core.jar) contains data structures based on integers, longs, doubles, and objects, only; fastutil.jar contains all classes. If you have both jars in your dependencies, this jar should be excluded.

There is a newer version: 8.5.15
Show newest version
/*
	* Copyright (C) 2020-2021 Sebastiano Vigna
	*
	* Licensed under the Apache License, Version 2.0 (the "License");
	* you may not use this file except in compliance with the License.
	* You may obtain a copy of the License at
	*
	*     http://www.apache.org/licenses/LICENSE-2.0
	*
	* Unless required by applicable law or agreed to in writing, software
	* distributed under the License is distributed on an "AS IS" BASIS,
	* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
	* See the License for the specific language governing permissions and
	* limitations under the License.
	*/
package it.unimi.dsi.fastutil.bytes;
import java.util.Objects;
import java.util.function.Predicate;
/**
 * A type-specific {@link Predicate}; provides methods to test a primitive type
 * both as object and as primitive.
 *
 * 

* Except for the boolean case, this interface extends both a parameterized * {@link java.util.function.Predicate} and a type-specific JDK predicate (e.g., * {@link java.util.function.IntPredicate}). For types missing a type-specific * JDK predicate (e.g., {@code short} or {@code float}), we extend the predicate * associated with the smallest primitive type that can represent the current * type (e.g., {@code int} or {@code double}, respectively). * * @see Predicate * @since 8.5.0 */ @FunctionalInterface public interface BytePredicate extends Predicate, java.util.function.IntPredicate { /** * Evaluates this predicate on the given input. * * @param t * the input. * @return {@code true} if the input matches the predicate, otherwise * {@code false} */ boolean test(byte t); /** * {@inheritDoc} * * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default boolean test(final int t) { return test(it.unimi.dsi.fastutil.SafeMath.safeIntToByte(t)); } /** * {@inheritDoc} * * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default boolean test(final Byte t) { return test(t.byteValue()); } /** * Returns a composed type-specific predicate that represents a short-circuiting * logical AND of this type-specific predicate and another. * * @param other * a predicate that will be logically-ANDed with this predicate. * @return a composed predicate that represents the short-circuiting logical AND * of this predicate and the {@code other} predicate. * @see Predicate#and * @apiNote Implementing classes should generally override this method and keep * the default implementation of the other overloads, which will * delegate to this method (after proper conversions). */ default BytePredicate and(final BytePredicate other) { Objects.requireNonNull(other); return t -> test(t) && other.test(t); } /** * {@inheritDoc} * * @implNote Composing with a JDK type-specific predicate will be slightly less * efficient than using a type-specific predicate, as the argument * will have to be widened at each call. */ @Override default BytePredicate and(final java.util.function.IntPredicate other) { return and(other instanceof BytePredicate ? (BytePredicate) other : (BytePredicate) other::test); } /** * {@inheritDoc} * * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default Predicate and(final Predicate other) { return Predicate.super.and(other); } @Override /** {@inheritDoc} */ default BytePredicate negate() { return t -> !test(t); } /** * Returns a composed type-specific predicate that represents a short-circuiting * logical OR of this type-specific predicate and another. * * @param other * a predicate that will be logically-ORed with this predicate. * @return a composed predicate that represents the short-circuiting logical OR * of this predicate and the {@code other} predicate. * @see Predicate#or * @apiNote Implementing classes should generally override this method and keep * the default implementation of the other overloads, which will * delegate to this method (after proper conversions). */ default BytePredicate or(final BytePredicate other) { Objects.requireNonNull(other); return t -> test(t) || other.test(t); } /** * {@inheritDoc} * * @implNote Composing with a JDK type-specific predicate will be slightly less * efficient than using a type-specific predicate, as the argument * will have to be widened at each call. */ @Override default BytePredicate or(final java.util.function.IntPredicate other) { return or(other instanceof BytePredicate ? (BytePredicate) other : (BytePredicate) other::test); } /** * {@inheritDoc} * * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default Predicate or(final Predicate other) { return Predicate.super.or(other); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy