it.unimi.dsi.fastutil.ints.Int2ObjectLinkedOpenHashMap Maven / Gradle / Ivy
Show all versions of fastutil-core Show documentation
/*
* Copyright (C) 2002-2022 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package it.unimi.dsi.fastutil.ints;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Map;
import java.util.Arrays;
import java.util.NoSuchElementException;
import java.util.function.Consumer;
import it.unimi.dsi.fastutil.objects.ObjectCollection;
import it.unimi.dsi.fastutil.objects.AbstractObjectCollection;
import java.util.Comparator;
import it.unimi.dsi.fastutil.objects.ObjectIterator;
import it.unimi.dsi.fastutil.objects.AbstractObjectSortedSet;
import it.unimi.dsi.fastutil.objects.ObjectListIterator;
import it.unimi.dsi.fastutil.objects.ObjectBidirectionalIterator;
import it.unimi.dsi.fastutil.objects.ObjectSpliterator;
import it.unimi.dsi.fastutil.objects.ObjectSpliterators;
import it.unimi.dsi.fastutil.objects.ObjectSortedSet;
/**
* A type-specific linked hash map with with a fast, small-footprint implementation.
*
*
* Instances of this class use a hash table to represent a map. The table is filled up to a
* specified load factor, and then doubled in size to accommodate new entries. If the table
* is emptied below one fourth of the load factor, it is halved in size; however, the table
* is never reduced to a size smaller than that at creation time: this approach makes it possible to
* create maps with a large capacity in which insertions and deletions do not cause immediately
* rehashing. Moreover, halving is not performed when deleting entries from an iterator, as it would
* interfere with the iteration process.
*
*
* Note that {@link #clear()} does not modify the hash table size. Rather, a family of
* {@linkplain #trim() trimming methods} lets you control the size of the table; this is
* particularly useful if you reuse instances of this class.
*
*
* Entries returned by the type-specific {@link #entrySet()} method implement the suitable
* type-specific {@link it.unimi.dsi.fastutil.Pair Pair} interface; only values are mutable.
*
*
* Iterators generated by this map will enumerate pairs in the same order in which they have been
* added to the map (addition of pairs whose key is already present in the map does not change the
* iteration order). Note that this order has nothing in common with the natural order of the keys.
* The order is kept by means of a doubly linked list, represented via an array of longs
* parallel to the table.
*
*
* This class implements the interface of a sorted map, so to allow easy access of the iteration
* order: for instance, you can get the first key in iteration order with {@code firstKey()} without
* having to create an iterator; however, this class partially violates the
* {@link java.util.SortedMap} contract because all submap methods throw an exception and
* {@link #comparator()} returns always {@code null}.
*
*
* Additional methods, such as {@code getAndMoveToFirst()}, make it easy to use instances of this
* class as a cache (e.g., with LRU policy).
*
*
* The iterators provided by the views of this class using are type-specific
* {@linkplain java.util.ListIterator list iterators}, and can be started at any element which
* is a key of the map, or a {@link NoSuchElementException} exception will be thrown. If,
* however, the provided element is not the first or last key in the map, the first access to the
* list index will require linear time, as in the worst case the entire key set must be scanned in
* iteration order to retrieve the positional index of the starting key. If you use just the methods
* of a type-specific {@link it.unimi.dsi.fastutil.BidirectionalIterator}, however, all operations
* will be performed in constant time.
*
* @see Hash
* @see HashCommon
*/
public class Int2ObjectLinkedOpenHashMap extends AbstractInt2ObjectSortedMap implements java.io.Serializable, Cloneable, Hash {
private static final long serialVersionUID = 0L;
private static final boolean ASSERTS = false;
/** The array of keys. */
protected transient int[] key;
/** The array of values. */
protected transient V[] value;
/** The mask for wrapping a position counter. */
protected transient int mask;
/** Whether this map contains the key zero. */
protected transient boolean containsNullKey;
/**
* The index of the first entry in iteration order. It is valid iff {@link #size} is nonzero;
* otherwise, it contains -1.
*/
protected transient int first = -1;
/**
* The index of the last entry in iteration order. It is valid iff {@link #size} is nonzero;
* otherwise, it contains -1.
*/
protected transient int last = -1;
/**
* For each entry, the next and the previous entry in iteration order, stored as
* {@code ((prev & 0xFFFFFFFFL) << 32) | (next & 0xFFFFFFFFL)}. The first entry contains predecessor
* -1, and the last entry contains successor -1.
*/
protected transient long[] link;
/** The current table size. */
protected transient int n;
/** Threshold after which we rehash. It must be the table size times {@link #f}. */
protected transient int maxFill;
/** We never resize below this threshold, which is the construction-time {#n}. */
protected final transient int minN;
/** Number of entries in the set (including the key zero, if present). */
protected int size;
/** The acceptable load factor. */
protected final float f;
/** Cached set of entries. */
protected transient FastSortedEntrySet entries;
/** Cached set of keys. */
protected transient IntSortedSet keys;
/** Cached collection of values. */
protected transient ObjectCollection values;
/**
* Creates a new hash map.
*
*
* The actual table size will be the least power of two greater than {@code expected}/{@code f}.
*
* @param expected the expected number of elements in the hash map.
* @param f the load factor.
*/
@SuppressWarnings("unchecked")
public Int2ObjectLinkedOpenHashMap(final int expected, final float f) {
if (f <= 0 || f >= 1) throw new IllegalArgumentException("Load factor must be greater than 0 and smaller than 1");
if (expected < 0) throw new IllegalArgumentException("The expected number of elements must be nonnegative");
this.f = f;
minN = n = arraySize(expected, f);
mask = n - 1;
maxFill = maxFill(n, f);
key = new int[n + 1];
value = (V[])new Object[n + 1];
link = new long[n + 1];
}
/**
* Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*
* @param expected the expected number of elements in the hash map.
*/
public Int2ObjectLinkedOpenHashMap(final int expected) {
this(expected, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new hash map with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} entries and
* {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*/
public Int2ObjectLinkedOpenHashMap() {
this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new hash map copying a given one.
*
* @param m a {@link Map} to be copied into the new hash map.
* @param f the load factor.
*/
public Int2ObjectLinkedOpenHashMap(final Map extends Integer, ? extends V> m, final float f) {
this(m.size(), f);
putAll(m);
}
/**
* Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given one.
*
* @param m a {@link Map} to be copied into the new hash map.
*/
public Int2ObjectLinkedOpenHashMap(final Map extends Integer, ? extends V> m) {
this(m, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new hash map copying a given type-specific one.
*
* @param m a type-specific map to be copied into the new hash map.
* @param f the load factor.
*/
public Int2ObjectLinkedOpenHashMap(final Int2ObjectMap m, final float f) {
this(m.size(), f);
putAll(m);
}
/**
* Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given
* type-specific one.
*
* @param m a type-specific map to be copied into the new hash map.
*/
public Int2ObjectLinkedOpenHashMap(final Int2ObjectMap m) {
this(m, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a new hash map using the elements of two parallel arrays.
*
* @param k the array of keys of the new hash map.
* @param v the array of corresponding values in the new hash map.
* @param f the load factor.
* @throws IllegalArgumentException if {@code k} and {@code v} have different lengths.
*/
public Int2ObjectLinkedOpenHashMap(final int[] k, final V[] v, final float f) {
this(k.length, f);
if (k.length != v.length) throw new IllegalArgumentException("The key array and the value array have different lengths (" + k.length + " and " + v.length + ")");
for (int i = 0; i < k.length; i++) this.put(k[i], v[i]);
}
/**
* Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using the elements of
* two parallel arrays.
*
* @param k the array of keys of the new hash map.
* @param v the array of corresponding values in the new hash map.
* @throws IllegalArgumentException if {@code k} and {@code v} have different lengths.
*/
public Int2ObjectLinkedOpenHashMap(final int[] k, final V[] v) {
this(k, v, DEFAULT_LOAD_FACTOR);
}
private int realSize() {
return containsNullKey ? size - 1 : size;
}
private void ensureCapacity(final int capacity) {
final int needed = arraySize(capacity, f);
if (needed > n) rehash(needed);
}
private void tryCapacity(final long capacity) {
final int needed = (int)Math.min(1 << 30, Math.max(2, HashCommon.nextPowerOfTwo((long)Math.ceil(capacity / f))));
if (needed > n) rehash(needed);
}
private V removeEntry(final int pos) {
final V oldValue = value[pos];
value[pos] = null;
size--;
fixPointers(pos);
shiftKeys(pos);
if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2);
return oldValue;
}
private V removeNullEntry() {
containsNullKey = false;
final V oldValue = value[n];
value[n] = null;
size--;
fixPointers(n);
if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2);
return oldValue;
}
@Override
public void putAll(Map extends Integer, ? extends V> m) {
if (f <= .5) ensureCapacity(m.size()); // The resulting map will be sized for m.size() elements
else tryCapacity(size() + m.size()); // The resulting map will be tentatively sized for size() + m.size()
// elements
super.putAll(m);
}
private int find(final int k) {
if (((k) == (0))) return containsNullKey ? n : -(n + 1);
int curr;
final int[] key = this.key;
int pos;
// The starting point.
if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k))) & mask]) == (0))) return -(pos + 1);
if (((k) == (curr))) return pos;
// There's always an unused entry.
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == (0))) return -(pos + 1);
if (((k) == (curr))) return pos;
}
}
private void insert(final int pos, final int k, final V v) {
if (pos == n) containsNullKey = true;
key[pos] = k;
value[pos] = v;
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER(link[pos], -1, -1);
link[pos] = -1L;
} else {
link[last] ^= ((link[last] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[pos] = ((last & 0xFFFFFFFFL) << 32) | (-1 & 0xFFFFFFFFL);
last = pos;
}
if (size++ >= maxFill) rehash(arraySize(size + 1, f));
if (ASSERTS) checkTable();
}
@Override
public V put(final int k, final V v) {
final int pos = find(k);
if (pos < 0) {
insert(-pos - 1, k, v);
return defRetValue;
}
final V oldValue = value[pos];
value[pos] = v;
return oldValue;
}
/**
* Shifts left entries with the specified hash code, starting at the specified position, and empties
* the resulting free entry.
*
* @param pos a starting position.
*/
protected final void shiftKeys(int pos) {
// Shift entries with the same hash.
int last, slot;
int curr;
final int[] key = this.key;
for (;;) {
pos = ((last = pos) + 1) & mask;
for (;;) {
if (((curr = key[pos]) == (0))) {
key[last] = (0);
value[last] = null;
return;
}
slot = (it.unimi.dsi.fastutil.HashCommon.mix((curr))) & mask;
if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break;
pos = (pos + 1) & mask;
}
key[last] = curr;
value[last] = value[pos];
fixPointers(pos, last);
}
}
@Override
public V remove(final int k) {
if (((k) == (0))) {
if (containsNullKey) return removeNullEntry();
return defRetValue;
}
int curr;
final int[] key = this.key;
int pos;
// The starting point.
if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k))) & mask]) == (0))) return defRetValue;
if (((k) == (curr))) return removeEntry(pos);
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == (0))) return defRetValue;
if (((k) == (curr))) return removeEntry(pos);
}
}
private V setValue(final int pos, final V v) {
final V oldValue = value[pos];
value[pos] = v;
return oldValue;
}
/**
* Removes the mapping associated with the first key in iteration order.
*
* @return the value previously associated with the first key in iteration order.
* @throws NoSuchElementException is this map is empty.
*/
public V removeFirst() {
if (size == 0) throw new NoSuchElementException();
final int pos = first;
// Abbreviated version of fixPointers(pos)
first = (int)link[pos];
if (0 <= first) {
// Special case of SET_PREV(link[first], -1)
link[first] |= (-1 & 0xFFFFFFFFL) << 32;
}
size--;
final V v = value[pos];
if (pos == n) {
containsNullKey = false;
value[n] = null;
} else shiftKeys(pos);
if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2);
return v;
}
/**
* Removes the mapping associated with the last key in iteration order.
*
* @return the value previously associated with the last key in iteration order.
* @throws NoSuchElementException is this map is empty.
*/
public V removeLast() {
if (size == 0) throw new NoSuchElementException();
final int pos = last;
// Abbreviated version of fixPointers(pos)
last = (int)(link[pos] >>> 32);
if (0 <= last) {
// Special case of SET_NEXT(link[last], -1)
link[last] |= -1 & 0xFFFFFFFFL;
}
size--;
final V v = value[pos];
if (pos == n) {
containsNullKey = false;
value[n] = null;
} else shiftKeys(pos);
if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2);
return v;
}
private void moveIndexToFirst(final int i) {
if (size == 1 || first == i) return;
if (last == i) {
last = (int)(link[i] >>> 32);
// Special case of SET_NEXT(link[last], -1);
link[last] |= -1 & 0xFFFFFFFFL;
} else {
final long linki = link[i];
final int prev = (int)(linki >>> 32);
final int next = (int)linki;
link[prev] ^= ((link[prev] ^ (linki & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[next] ^= ((link[next] ^ (linki & 0xFFFFFFFF00000000L)) & 0xFFFFFFFF00000000L);
}
link[first] ^= ((link[first] ^ ((i & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
link[i] = ((-1 & 0xFFFFFFFFL) << 32) | (first & 0xFFFFFFFFL);
first = i;
}
private void moveIndexToLast(final int i) {
if (size == 1 || last == i) return;
if (first == i) {
first = (int)link[i];
// Special case of SET_PREV(link[first], -1);
link[first] |= (-1 & 0xFFFFFFFFL) << 32;
} else {
final long linki = link[i];
final int prev = (int)(linki >>> 32);
final int next = (int)linki;
link[prev] ^= ((link[prev] ^ (linki & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[next] ^= ((link[next] ^ (linki & 0xFFFFFFFF00000000L)) & 0xFFFFFFFF00000000L);
}
link[last] ^= ((link[last] ^ (i & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[i] = ((last & 0xFFFFFFFFL) << 32) | (-1 & 0xFFFFFFFFL);
last = i;
}
/**
* Returns the value to which the given key is mapped; if the key is present, it is moved to the
* first position of the iteration order.
*
* @param k the key.
* @return the corresponding value, or the {@linkplain #defaultReturnValue() default return value}
* if no value was present for the given key.
*/
public V getAndMoveToFirst(final int k) {
if (((k) == (0))) {
if (containsNullKey) {
moveIndexToFirst(n);
return value[n];
}
return defRetValue;
}
int curr;
final int[] key = this.key;
int pos;
// The starting point.
if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k))) & mask]) == (0))) return defRetValue;
if (((k) == (curr))) {
moveIndexToFirst(pos);
return value[pos];
}
// There's always an unused entry.
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == (0))) return defRetValue;
if (((k) == (curr))) {
moveIndexToFirst(pos);
return value[pos];
}
}
}
/**
* Returns the value to which the given key is mapped; if the key is present, it is moved to the
* last position of the iteration order.
*
* @param k the key.
* @return the corresponding value, or the {@linkplain #defaultReturnValue() default return value}
* if no value was present for the given key.
*/
public V getAndMoveToLast(final int k) {
if (((k) == (0))) {
if (containsNullKey) {
moveIndexToLast(n);
return value[n];
}
return defRetValue;
}
int curr;
final int[] key = this.key;
int pos;
// The starting point.
if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k))) & mask]) == (0))) return defRetValue;
if (((k) == (curr))) {
moveIndexToLast(pos);
return value[pos];
}
// There's always an unused entry.
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == (0))) return defRetValue;
if (((k) == (curr))) {
moveIndexToLast(pos);
return value[pos];
}
}
}
/**
* Adds a pair to the map; if the key is already present, it is moved to the first position of the
* iteration order.
*
* @param k the key.
* @param v the value.
* @return the old value, or the {@linkplain #defaultReturnValue() default return value} if no value
* was present for the given key.
*/
public V putAndMoveToFirst(final int k, final V v) {
int pos;
if (((k) == (0))) {
if (containsNullKey) {
moveIndexToFirst(n);
return setValue(n, v);
}
containsNullKey = true;
pos = n;
} else {
int curr;
final int[] key = this.key;
// The starting point.
if (!((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k))) & mask]) == (0))) {
if (((curr) == (k))) {
moveIndexToFirst(pos);
return setValue(pos, v);
}
while (!((curr = key[pos = (pos + 1) & mask]) == (0))) if (((curr) == (k))) {
moveIndexToFirst(pos);
return setValue(pos, v);
}
}
}
key[pos] = k;
value[pos] = v;
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER(link[pos], -1, -1);
link[pos] = -1L;
} else {
link[first] ^= ((link[first] ^ ((pos & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
link[pos] = ((-1 & 0xFFFFFFFFL) << 32) | (first & 0xFFFFFFFFL);
first = pos;
}
if (size++ >= maxFill) rehash(arraySize(size, f));
if (ASSERTS) checkTable();
return defRetValue;
}
/**
* Adds a pair to the map; if the key is already present, it is moved to the last position of the
* iteration order.
*
* @param k the key.
* @param v the value.
* @return the old value, or the {@linkplain #defaultReturnValue() default return value} if no value
* was present for the given key.
*/
public V putAndMoveToLast(final int k, final V v) {
int pos;
if (((k) == (0))) {
if (containsNullKey) {
moveIndexToLast(n);
return setValue(n, v);
}
containsNullKey = true;
pos = n;
} else {
int curr;
final int[] key = this.key;
// The starting point.
if (!((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k))) & mask]) == (0))) {
if (((curr) == (k))) {
moveIndexToLast(pos);
return setValue(pos, v);
}
while (!((curr = key[pos = (pos + 1) & mask]) == (0))) if (((curr) == (k))) {
moveIndexToLast(pos);
return setValue(pos, v);
}
}
}
key[pos] = k;
value[pos] = v;
if (size == 0) {
first = last = pos;
// Special case of SET_UPPER_LOWER(link[pos], -1, -1);
link[pos] = -1L;
} else {
link[last] ^= ((link[last] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[pos] = ((last & 0xFFFFFFFFL) << 32) | (-1 & 0xFFFFFFFFL);
last = pos;
}
if (size++ >= maxFill) rehash(arraySize(size, f));
if (ASSERTS) checkTable();
return defRetValue;
}
@Override
public V get(final int k) {
if (((k) == (0))) return containsNullKey ? value[n] : defRetValue;
int curr;
final int[] key = this.key;
int pos;
// The starting point.
if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k))) & mask]) == (0))) return defRetValue;
if (((k) == (curr))) return value[pos];
// There's always an unused entry.
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == (0))) return defRetValue;
if (((k) == (curr))) return value[pos];
}
}
@Override
public boolean containsKey(final int k) {
if (((k) == (0))) return containsNullKey;
int curr;
final int[] key = this.key;
int pos;
// The starting point.
if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k))) & mask]) == (0))) return false;
if (((k) == (curr))) return true;
// There's always an unused entry.
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == (0))) return false;
if (((k) == (curr))) return true;
}
}
@Override
public boolean containsValue(final Object v) {
final V value[] = this.value;
final int key[] = this.key;
if (containsNullKey && java.util.Objects.equals(value[n], v)) return true;
for (int i = n; i-- != 0;) if (!((key[i]) == (0)) && java.util.Objects.equals(value[i], v)) return true;
return false;
}
/** {@inheritDoc} */
@Override
public V getOrDefault(final int k, final V defaultValue) {
if (((k) == (0))) return containsNullKey ? value[n] : defaultValue;
int curr;
final int[] key = this.key;
int pos;
// The starting point.
if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k))) & mask]) == (0))) return defaultValue;
if (((k) == (curr))) return value[pos];
// There's always an unused entry.
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == (0))) return defaultValue;
if (((k) == (curr))) return value[pos];
}
}
/** {@inheritDoc} */
@Override
public V putIfAbsent(final int k, final V v) {
final int pos = find(k);
if (pos >= 0) return value[pos];
insert(-pos - 1, k, v);
return defRetValue;
}
/** {@inheritDoc} */
@Override
public boolean remove(final int k, final Object v) {
if (((k) == (0))) {
if (containsNullKey && java.util.Objects.equals(v, value[n])) {
removeNullEntry();
return true;
}
return false;
}
int curr;
final int[] key = this.key;
int pos;
// The starting point.
if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k))) & mask]) == (0))) return false;
if (((k) == (curr)) && java.util.Objects.equals(v, value[pos])) {
removeEntry(pos);
return true;
}
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == (0))) return false;
if (((k) == (curr)) && java.util.Objects.equals(v, value[pos])) {
removeEntry(pos);
return true;
}
}
}
/** {@inheritDoc} */
@Override
public boolean replace(final int k, final V oldValue, final V v) {
final int pos = find(k);
if (pos < 0 || !java.util.Objects.equals(oldValue, value[pos])) return false;
value[pos] = v;
return true;
}
/** {@inheritDoc} */
@Override
public V replace(final int k, final V v) {
final int pos = find(k);
if (pos < 0) return defRetValue;
final V oldValue = value[pos];
value[pos] = v;
return oldValue;
}
/** {@inheritDoc} */
@Override
public V computeIfAbsent(final int k, final java.util.function.IntFunction extends V> mappingFunction) {
java.util.Objects.requireNonNull(mappingFunction);
final int pos = find(k);
if (pos >= 0) return value[pos];
final V newValue = mappingFunction.apply(k);
insert(-pos - 1, k, newValue);
return newValue;
}
/** {@inheritDoc} */
@Override
public V computeIfAbsent(final int key, final Int2ObjectFunction extends V> mappingFunction) {
java.util.Objects.requireNonNull(mappingFunction);
final int pos = find(key);
if (pos >= 0) return value[pos];
if (!mappingFunction.containsKey(key)) return defRetValue;
final V newValue = mappingFunction.get(key);
insert(-pos - 1, key, newValue);
return newValue;
}
/** {@inheritDoc} */
@Override
public V computeIfPresent(final int k, final java.util.function.BiFunction super Integer, ? super V, ? extends V> remappingFunction) {
java.util.Objects.requireNonNull(remappingFunction);
final int pos = find(k);
if (pos < 0) return defRetValue;
if (value[pos] == null) return defRetValue;
final V newValue = remappingFunction.apply(Integer.valueOf(k), (value[pos]));
if (newValue == null) {
if (((k) == (0))) removeNullEntry();
else removeEntry(pos);
return defRetValue;
}
return value[pos] = (newValue);
}
/** {@inheritDoc} */
@Override
public V compute(final int k, final java.util.function.BiFunction super Integer, ? super V, ? extends V> remappingFunction) {
java.util.Objects.requireNonNull(remappingFunction);
final int pos = find(k);
final V newValue = remappingFunction.apply(Integer.valueOf(k), pos >= 0 ? (value[pos]) : null);
if (newValue == null) {
if (pos >= 0) {
if (((k) == (0))) removeNullEntry();
else removeEntry(pos);
}
return defRetValue;
}
V newVal = (newValue);
if (pos < 0) {
insert(-pos - 1, k, newVal);
return newVal;
}
return value[pos] = newVal;
}
/** {@inheritDoc} */
@Override
public V merge(final int k, final V v, final java.util.function.BiFunction super V, ? super V, ? extends V> remappingFunction) {
java.util.Objects.requireNonNull(remappingFunction);
java.util.Objects.requireNonNull(v);
final int pos = find(k);
if (pos < 0 || value[pos] == null) {
if (pos < 0) insert(-pos - 1, k, v);
else value[pos] = v;
return v;
}
final V newValue = remappingFunction.apply((value[pos]), (v));
if (newValue == null) {
if (((k) == (0))) removeNullEntry();
else removeEntry(pos);
return defRetValue;
}
return value[pos] = (newValue);
}
/* Removes all elements from this map.
*
* To increase object reuse, this method does not change the table size.
* If you want to reduce the table size, you must use {@link #trim()}.
*
*/
@Override
public void clear() {
if (size == 0) return;
size = 0;
containsNullKey = false;
Arrays.fill(key, (0));
Arrays.fill(value, null);
first = last = -1;
}
@Override
public int size() {
return size;
}
@Override
public boolean isEmpty() {
return size == 0;
}
/**
* The entry class for a hash map does not record key and value, but rather the position in the hash
* table of the corresponding entry. This is necessary so that calls to
* {@link java.util.Map.Entry#setValue(Object)} are reflected in the map
*/
final class MapEntry implements Int2ObjectMap.Entry, Map.Entry, IntObjectPair {
// The table index this entry refers to, or -1 if this entry has been deleted.
int index;
MapEntry(final int index) {
this.index = index;
}
MapEntry() {
}
@Override
public int getIntKey() {
return key[index];
}
@Override
public int leftInt() {
return key[index];
}
@Override
public V getValue() {
return value[index];
}
@Override
public V right() {
return value[index];
}
@Override
public V setValue(final V v) {
final V oldValue = value[index];
value[index] = v;
return oldValue;
}
@Override
public IntObjectPair right(final V v) {
value[index] = v;
return this;
}
/**
* {@inheritDoc}
*
* @deprecated Please use the corresponding type-specific method instead.
*/
@Deprecated
@Override
public Integer getKey() {
return Integer.valueOf(key[index]);
}
@SuppressWarnings("unchecked")
@Override
public boolean equals(final Object o) {
if (!(o instanceof Map.Entry)) return false;
Map.Entry e = (Map.Entry)o;
return ((key[index]) == ((e.getKey()).intValue())) && java.util.Objects.equals(value[index], (e.getValue()));
}
@Override
public int hashCode() {
return (key[index]) ^ ((value[index]) == null ? 0 : (value[index]).hashCode());
}
@Override
public String toString() {
return key[index] + "=>" + value[index];
}
}
/**
* Modifies the {@link #link} vector so that the given entry is removed. This method will complete
* in constant time.
*
* @param i the index of an entry.
*/
protected void fixPointers(final int i) {
if (size == 0) {
first = last = -1;
return;
}
if (first == i) {
first = (int)link[i];
if (0 <= first) {
// Special case of SET_PREV(link[first], -1)
link[first] |= (-1 & 0xFFFFFFFFL) << 32;
}
return;
}
if (last == i) {
last = (int)(link[i] >>> 32);
if (0 <= last) {
// Special case of SET_NEXT(link[last], -1)
link[last] |= -1 & 0xFFFFFFFFL;
}
return;
}
final long linki = link[i];
final int prev = (int)(linki >>> 32);
final int next = (int)linki;
link[prev] ^= ((link[prev] ^ (linki & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[next] ^= ((link[next] ^ (linki & 0xFFFFFFFF00000000L)) & 0xFFFFFFFF00000000L);
}
/**
* Modifies the {@link #link} vector for a shift from s to d.
*
* This method will complete in constant time.
*
* @param s the source position.
* @param d the destination position.
*/
protected void fixPointers(int s, int d) {
if (size == 1) {
first = last = d;
// Special case of SET_UPPER_LOWER(link[d], -1, -1)
link[d] = -1L;
return;
}
if (first == s) {
first = d;
link[(int)link[s]] ^= ((link[(int)link[s]] ^ ((d & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
link[d] = link[s];
return;
}
if (last == s) {
last = d;
link[(int)(link[s] >>> 32)] ^= ((link[(int)(link[s] >>> 32)] ^ (d & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[d] = link[s];
return;
}
final long links = link[s];
final int prev = (int)(links >>> 32);
final int next = (int)links;
link[prev] ^= ((link[prev] ^ (d & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[next] ^= ((link[next] ^ ((d & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
link[d] = links;
}
/**
* Returns the first key of this map in iteration order.
*
* @return the first key in iteration order.
*/
@Override
public int firstIntKey() {
if (size == 0) throw new NoSuchElementException();
return key[first];
}
/**
* Returns the last key of this map in iteration order.
*
* @return the last key in iteration order.
*/
@Override
public int lastIntKey() {
if (size == 0) throw new NoSuchElementException();
return key[last];
}
/**
* {@inheritDoc}
*
* @implSpec This implementation just throws an {@link UnsupportedOperationException}.
*/
@Override
public Int2ObjectSortedMap tailMap(int from) {
throw new UnsupportedOperationException();
}
/**
* {@inheritDoc}
*
* @implSpec This implementation just throws an {@link UnsupportedOperationException}.
*/
@Override
public Int2ObjectSortedMap headMap(int to) {
throw new UnsupportedOperationException();
}
/**
* {@inheritDoc}
*
* @implSpec This implementation just throws an {@link UnsupportedOperationException}.
*/
@Override
public Int2ObjectSortedMap subMap(int from, int to) {
throw new UnsupportedOperationException();
}
/**
* {@inheritDoc}
*
* @implSpec This implementation just returns {@code null}.
*/
@Override
public IntComparator comparator() {
return null;
}
/**
* A list iterator over a linked map.
*
*
* This class provides a list iterator over a linked hash map. The constructor runs in constant
* time.
*/
private abstract class MapIterator {
/**
* The entry that will be returned by the next call to {@link java.util.ListIterator#previous()} (or
* {@code null} if no previous entry exists).
*/
int prev = -1;
/**
* The entry that will be returned by the next call to {@link java.util.ListIterator#next()} (or
* {@code null} if no next entry exists).
*/
int next = -1;
/**
* The last entry that was returned (or -1 if we did not iterate or used
* {@link java.util.Iterator#remove()}).
*/
int curr = -1;
/**
* The current index (in the sense of a {@link java.util.ListIterator}). Note that this value is not
* meaningful when this iterator has been created using the nonempty constructor.
*/
int index = -1;
@SuppressWarnings("unused")
abstract void acceptOnIndex(final ConsumerType action, final int index);
protected MapIterator() {
next = first;
index = 0;
}
private MapIterator(final int from) {
if (((from) == (0))) {
if (Int2ObjectLinkedOpenHashMap.this.containsNullKey) {
next = (int)link[n];
prev = n;
return;
} else throw new NoSuchElementException("The key " + from + " does not belong to this map.");
}
if (((key[last]) == (from))) {
prev = last;
index = size;
return;
}
// The starting point.
int pos = (it.unimi.dsi.fastutil.HashCommon.mix((from))) & mask;
// There's always an unused entry.
while (!((key[pos]) == (0))) {
if (((key[pos]) == (from))) {
// Note: no valid index known.
next = (int)link[pos];
prev = pos;
return;
}
pos = (pos + 1) & mask;
}
throw new NoSuchElementException("The key " + from + " does not belong to this map.");
}
public boolean hasNext() {
return next != -1;
}
public boolean hasPrevious() {
return prev != -1;
}
private final void ensureIndexKnown() {
if (index >= 0) return;
if (prev == -1) {
index = 0;
return;
}
if (next == -1) {
index = size;
return;
}
int pos = first;
index = 1;
while (pos != prev) {
pos = (int)link[pos];
index++;
}
}
public int nextIndex() {
ensureIndexKnown();
return index;
}
public int previousIndex() {
ensureIndexKnown();
return index - 1;
}
public int nextEntry() {
if (!hasNext()) throw new NoSuchElementException();
curr = next;
next = (int)link[curr];
prev = curr;
if (index >= 0) index++;
return curr;
}
public int previousEntry() {
if (!hasPrevious()) throw new NoSuchElementException();
curr = prev;
prev = (int)(link[curr] >>> 32);
next = curr;
if (index >= 0) index--;
return curr;
}
public void forEachRemaining(final ConsumerType action) {
while (hasNext()) {
curr = next;
next = (int)link[curr];
prev = curr;
if (index >= 0) index++;
acceptOnIndex(action, curr);
}
}
public void remove() {
ensureIndexKnown();
if (curr == -1) throw new IllegalStateException();
if (curr == prev) {
/* If the last operation was a next(), we are removing an entry that preceeds
the current index, and thus we must decrement it. */
index--;
prev = (int)(link[curr] >>> 32);
} else next = (int)link[curr];
size--;
/* Now we manually fix the pointers. Because of our knowledge of next
and prev, this is going to be faster than calling fixPointers(). */
if (prev == -1) first = next;
else link[prev] ^= ((link[prev] ^ (next & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
if (next == -1) last = prev;
else link[next] ^= ((link[next] ^ ((prev & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
int last, slot, pos = curr;
curr = -1;
if (pos == n) {
Int2ObjectLinkedOpenHashMap.this.containsNullKey = false;
value[n] = null;
} else {
int curr;
final int[] key = Int2ObjectLinkedOpenHashMap.this.key;
// We have to horribly duplicate the shiftKeys() code because we need to update next/prev.
for (;;) {
pos = ((last = pos) + 1) & mask;
for (;;) {
if (((curr = key[pos]) == (0))) {
key[last] = (0);
value[last] = null;
return;
}
slot = (it.unimi.dsi.fastutil.HashCommon.mix((curr))) & mask;
if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break;
pos = (pos + 1) & mask;
}
key[last] = curr;
value[last] = value[pos];
if (next == pos) next = last;
if (prev == pos) prev = last;
fixPointers(pos, last);
}
}
}
public int skip(final int n) {
int i = n;
while (i-- != 0 && hasNext()) nextEntry();
return n - i - 1;
}
public int back(final int n) {
int i = n;
while (i-- != 0 && hasPrevious()) previousEntry();
return n - i - 1;
}
public void set(@SuppressWarnings("unused") Int2ObjectMap.Entry ok) {
throw new UnsupportedOperationException();
}
public void add(@SuppressWarnings("unused") Int2ObjectMap.Entry ok) {
throw new UnsupportedOperationException();
}
}
private final class EntryIterator extends MapIterator>> implements ObjectListIterator> {
private MapEntry entry;
public EntryIterator() {
}
public EntryIterator(int from) {
super(from);
}
// forEachRemaining inherited from MapIterator superclass.
@Override
final void acceptOnIndex(final Consumer super Int2ObjectMap.Entry> action, final int index) {
action.accept(new MapEntry(index));
}
@Override
public MapEntry next() {
return entry = new MapEntry(nextEntry());
}
@Override
public MapEntry previous() {
return entry = new MapEntry(previousEntry());
}
@Override
public void remove() {
super.remove();
entry.index = -1; // You cannot use a deleted entry.
}
}
private final class FastEntryIterator extends MapIterator>> implements ObjectListIterator> {
final MapEntry entry = new MapEntry();
public FastEntryIterator() {
}
public FastEntryIterator(int from) {
super(from);
}
// forEachRemaining inherited from MapIterator superclass.
@Override
final void acceptOnIndex(final Consumer super Int2ObjectMap.Entry> action, final int index) {
entry.index = index;
action.accept(entry);
}
@Override
public MapEntry next() {
entry.index = nextEntry();
return entry;
}
@Override
public MapEntry previous() {
entry.index = previousEntry();
return entry;
}
}
private final class MapEntrySet extends AbstractObjectSortedSet> implements FastSortedEntrySet {
private static final int SPLITERATOR_CHARACTERISTICS = ObjectSpliterators.SET_SPLITERATOR_CHARACTERISTICS | java.util.Spliterator.ORDERED;
@Override
public ObjectBidirectionalIterator> iterator() {
return new EntryIterator();
}
/**
* {@inheritDoc}
*
*
* There isn't a way to split efficiently while still preserving order for a linked data structure,
* so this implementation is just backed by the iterator. Thus, this spliterator is not well
* optimized for parallel streams.
*
*
* Note, contrary to the specification of {@link java.util.SortedSet}, this spliterator does not,
* report {@link java.util.Spliterators.SORTED}. This is because iteration order is based on
* insertion order, not natural ordering.
*/
@Override
public ObjectSpliterator> spliterator() {
return ObjectSpliterators.asSpliterator(iterator(), it.unimi.dsi.fastutil.Size64.sizeOf(Int2ObjectLinkedOpenHashMap.this), SPLITERATOR_CHARACTERISTICS);
}
@Override
public Comparator super Int2ObjectMap.Entry> comparator() {
return null;
}
@Override
public ObjectSortedSet> subSet(Int2ObjectMap.Entry fromElement, Int2ObjectMap.Entry toElement) {
throw new UnsupportedOperationException();
}
@Override
public ObjectSortedSet> headSet(Int2ObjectMap.Entry toElement) {
throw new UnsupportedOperationException();
}
@Override
public ObjectSortedSet> tailSet(Int2ObjectMap.Entry fromElement) {
throw new UnsupportedOperationException();
}
@Override
public Int2ObjectMap.Entry first() {
if (size == 0) throw new NoSuchElementException();
return new MapEntry(Int2ObjectLinkedOpenHashMap.this.first);
}
@Override
public Int2ObjectMap.Entry last() {
if (size == 0) throw new NoSuchElementException();
return new MapEntry(Int2ObjectLinkedOpenHashMap.this.last);
}
@Override
@SuppressWarnings("unchecked")
public boolean contains(final Object o) {
if (!(o instanceof Map.Entry)) return false;
final Map.Entry, ?> e = (Map.Entry, ?>)o;
if (e.getKey() == null || !(e.getKey() instanceof Integer)) return false;
final int k = ((Integer)(e.getKey())).intValue();
final V v = ((V)e.getValue());
if (((k) == (0))) return Int2ObjectLinkedOpenHashMap.this.containsNullKey && java.util.Objects.equals(value[n], v);
int curr;
final int[] key = Int2ObjectLinkedOpenHashMap.this.key;
int pos;
// The starting point.
if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k))) & mask]) == (0))) return false;
if (((k) == (curr))) return java.util.Objects.equals(value[pos], v);
// There's always an unused entry.
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == (0))) return false;
if (((k) == (curr))) return java.util.Objects.equals(value[pos], v);
}
}
@Override
@SuppressWarnings("unchecked")
public boolean remove(final Object o) {
if (!(o instanceof Map.Entry)) return false;
final Map.Entry, ?> e = (Map.Entry, ?>)o;
if (e.getKey() == null || !(e.getKey() instanceof Integer)) return false;
final int k = ((Integer)(e.getKey())).intValue();
final V v = ((V)e.getValue());
if (((k) == (0))) {
if (containsNullKey && java.util.Objects.equals(value[n], v)) {
removeNullEntry();
return true;
}
return false;
}
int curr;
final int[] key = Int2ObjectLinkedOpenHashMap.this.key;
int pos;
// The starting point.
if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k))) & mask]) == (0))) return false;
if (((curr) == (k))) {
if (java.util.Objects.equals(value[pos], v)) {
removeEntry(pos);
return true;
}
return false;
}
while (true) {
if (((curr = key[pos = (pos + 1) & mask]) == (0))) return false;
if (((curr) == (k))) {
if (java.util.Objects.equals(value[pos], v)) {
removeEntry(pos);
return true;
}
}
}
}
@Override
public int size() {
return size;
}
@Override
public void clear() {
Int2ObjectLinkedOpenHashMap.this.clear();
}
/**
* Returns a type-specific list iterator on the elements in this set, starting from a given element
* of the set. Please see the class documentation for implementation details.
*
* @param from an element to start from.
* @return a type-specific list iterator starting at the given element.
* @throws IllegalArgumentException if {@code from} does not belong to the set.
*/
@Override
public ObjectListIterator> iterator(final Int2ObjectMap.Entry from) {
return new EntryIterator(from.getIntKey());
}
/**
* Returns a type-specific fast list iterator on the elements in this set, starting from the first
* element. Please see the class documentation for implementation details.
*
* @return a type-specific list iterator starting at the first element.
*/
@Override
public ObjectListIterator> fastIterator() {
return new FastEntryIterator();
}
/**
* Returns a type-specific fast list iterator on the elements in this set, starting from a given
* element of the set. Please see the class documentation for implementation details.
*
* @param from an element to start from.
* @return a type-specific list iterator starting at the given element.
* @throws IllegalArgumentException if {@code from} does not belong to the set.
*/
@Override
public ObjectListIterator> fastIterator(final Int2ObjectMap.Entry from) {
return new FastEntryIterator(from.getIntKey());
}
/** {@inheritDoc} */
@Override
public void forEach(final Consumer super Int2ObjectMap.Entry> consumer) {
for (int i = size, curr, next = first; i-- != 0;) {
curr = next;
next = (int)link[curr];
consumer.accept(new AbstractInt2ObjectMap.BasicEntry(key[curr], value[curr]));
}
}
/** {@inheritDoc} */
@Override
public void fastForEach(final Consumer super Int2ObjectMap.Entry> consumer) {
final AbstractInt2ObjectMap.BasicEntry entry = new AbstractInt2ObjectMap.BasicEntry<>();
for (int i = size, curr, next = first; i-- != 0;) {
curr = next;
next = (int)link[curr];
entry.key = key[curr];
entry.value = value[curr];
consumer.accept(entry);
}
}
}
@Override
public FastSortedEntrySet int2ObjectEntrySet() {
if (entries == null) entries = new MapEntrySet();
return entries;
}
/**
* An iterator on keys.
*
*
* We simply override the
* {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and
* possibly their type-specific counterparts) so that they return keys instead of entries.
*/
private final class KeyIterator extends MapIterator implements IntListIterator {
public KeyIterator(final int k) {
super(k);
}
@Override
public int previousInt() {
return key[previousEntry()];
}
public KeyIterator() {
super();
}
// forEachRemaining inherited from MapIterator superclass.
// Despite the superclass declared with generics, the way Java inherits and generates bridge methods
// avoids the boxing/unboxing
@Override
final void acceptOnIndex(final java.util.function.IntConsumer action, final int index) {
action.accept(key[index]);
}
@Override
public int nextInt() {
return key[nextEntry()];
}
}
private final class KeySet extends AbstractIntSortedSet {
private static final int SPLITERATOR_CHARACTERISTICS = IntSpliterators.SET_SPLITERATOR_CHARACTERISTICS | java.util.Spliterator.ORDERED;
@Override
public IntListIterator iterator(final int from) {
return new KeyIterator(from);
}
@Override
public IntListIterator iterator() {
return new KeyIterator();
}
/**
* {@inheritDoc}
*
* @see EntrySet#spliterator()
*/
@Override
public IntSpliterator spliterator() {
return IntSpliterators.asSpliterator(iterator(), it.unimi.dsi.fastutil.Size64.sizeOf(Int2ObjectLinkedOpenHashMap.this), SPLITERATOR_CHARACTERISTICS);
}
/** {@inheritDoc} */
@Override
public void forEach(final java.util.function.IntConsumer consumer) {
for (int i = size, curr, next = first; i-- != 0;) {
curr = next;
next = (int)link[curr];
consumer.accept(key[curr]);
}
}
@Override
public int size() {
return size;
}
@Override
public boolean contains(int k) {
return containsKey(k);
}
@Override
public boolean remove(int k) {
final int oldSize = size;
Int2ObjectLinkedOpenHashMap.this.remove(k);
return size != oldSize;
}
@Override
public void clear() {
Int2ObjectLinkedOpenHashMap.this.clear();
}
@Override
public int firstInt() {
if (size == 0) throw new NoSuchElementException();
return key[first];
}
@Override
public int lastInt() {
if (size == 0) throw new NoSuchElementException();
return key[last];
}
@Override
public IntComparator comparator() {
return null;
}
@Override
public IntSortedSet tailSet(int from) {
throw new UnsupportedOperationException();
}
@Override
public IntSortedSet headSet(int to) {
throw new UnsupportedOperationException();
}
@Override
public IntSortedSet subSet(int from, int to) {
throw new UnsupportedOperationException();
}
}
@Override
public IntSortedSet keySet() {
if (keys == null) keys = new KeySet();
return keys;
}
/**
* An iterator on values.
*
*
* We simply override the
* {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and
* possibly their type-specific counterparts) so that they return values instead of entries.
*/
private final class ValueIterator extends MapIterator> implements ObjectListIterator {
@Override
public V previous() {
return value[previousEntry()];
}
public ValueIterator() {
super();
}
// forEachRemaining inherited from MapIterator superclass.
// Despite the superclass declared with generics, the way Java inherits and generates bridge methods
// avoids the boxing/unboxing
@Override
final void acceptOnIndex(final Consumer super V> action, final int index) {
action.accept(value[index]);
}
@Override
public V next() {
return value[nextEntry()];
}
}
@Override
public ObjectCollection values() {
if (values == null) values = new AbstractObjectCollection() {
private static final int SPLITERATOR_CHARACTERISTICS = ObjectSpliterators.COLLECTION_SPLITERATOR_CHARACTERISTICS | java.util.Spliterator.ORDERED;
@Override
public ObjectIterator iterator() {
return new ValueIterator();
}
/**
* {@inheritDoc}
*
* @see EntrySet#spliterator()
*/
@Override
public ObjectSpliterator spliterator() {
return ObjectSpliterators.asSpliterator(iterator(), it.unimi.dsi.fastutil.Size64.sizeOf(Int2ObjectLinkedOpenHashMap.this), SPLITERATOR_CHARACTERISTICS);
}
/** {@inheritDoc} */
@Override
public void forEach(final Consumer super V> consumer) {
for (int i = size, curr, next = first; i-- != 0;) {
curr = next;
next = (int)link[curr];
consumer.accept(value[curr]);
}
}
@Override
public int size() {
return size;
}
@Override
public boolean contains(Object v) {
return containsValue(v);
}
@Override
public void clear() {
Int2ObjectLinkedOpenHashMap.this.clear();
}
};
return values;
}
/**
* Rehashes the map, making the table as small as possible.
*
*
* This method rehashes the table to the smallest size satisfying the load factor. It can be used
* when the set will not be changed anymore, so to optimize access speed and size.
*
*
* If the table size is already the minimum possible, this method does nothing.
*
* @return true if there was enough memory to trim the map.
* @see #trim(int)
*/
public boolean trim() {
return trim(size);
}
/**
* Rehashes this map if the table is too large.
*
*
* Let N be the smallest table size that can hold max(n,{@link #size()})
* entries, still satisfying the load factor. If the current table size is smaller than or equal to
* N, this method does nothing. Otherwise, it rehashes this map in a table of size
* N.
*
*
* This method is useful when reusing maps. {@linkplain #clear() Clearing a map} leaves the table
* size untouched. If you are reusing a map many times, you can call this method with a typical size
* to avoid keeping around a very large table just because of a few large transient maps.
*
* @param n the threshold for the trimming.
* @return true if there was enough memory to trim the map.
* @see #trim()
*/
public boolean trim(final int n) {
final int l = HashCommon.nextPowerOfTwo((int)Math.ceil(n / f));
if (l >= this.n || size > maxFill(l, f)) return true;
try {
rehash(l);
} catch (OutOfMemoryError cantDoIt) {
return false;
}
return true;
}
/**
* Rehashes the map.
*
*
* This method implements the basic rehashing strategy, and may be overridden by subclasses
* implementing different rehashing strategies (e.g., disk-based rehashing). However, you should not
* override this method unless you understand the internal workings of this class.
*
* @param newN the new size
*/
@SuppressWarnings("unchecked")
protected void rehash(final int newN) {
final int key[] = this.key;
final V value[] = this.value;
final int mask = newN - 1; // Note that this is used by the hashing macro
final int newKey[] = new int[newN + 1];
final V newValue[] = (V[])new Object[newN + 1];
int i = first, prev = -1, newPrev = -1, t, pos;
final long link[] = this.link;
final long newLink[] = new long[newN + 1];
first = -1;
for (int j = size; j-- != 0;) {
if (((key[i]) == (0))) pos = newN;
else {
pos = (it.unimi.dsi.fastutil.HashCommon.mix((key[i]))) & mask;
while (!((newKey[pos]) == (0))) pos = (pos + 1) & mask;
}
newKey[pos] = key[i];
newValue[pos] = value[i];
if (prev != -1) {
newLink[newPrev] ^= ((newLink[newPrev] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
newLink[pos] ^= ((newLink[pos] ^ ((newPrev & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
newPrev = pos;
} else {
newPrev = first = pos;
// Special case of SET(newLink[pos], -1, -1);
newLink[pos] = -1L;
}
t = i;
i = (int)link[i];
prev = t;
}
this.link = newLink;
this.last = newPrev;
if (newPrev != -1)
// Special case of SET_NEXT(newLink[newPrev], -1);
newLink[newPrev] |= -1 & 0xFFFFFFFFL;
n = newN;
this.mask = mask;
maxFill = maxFill(n, f);
this.key = newKey;
this.value = newValue;
}
/**
* Returns a deep copy of this map.
*
*
* This method performs a deep copy of this hash map; the data stored in the map, however, is not
* cloned. Note that this makes a difference only for object keys.
*
* @return a deep copy of this map.
*/
@Override
@SuppressWarnings("unchecked")
public Int2ObjectLinkedOpenHashMap clone() {
Int2ObjectLinkedOpenHashMap c;
try {
c = (Int2ObjectLinkedOpenHashMap)super.clone();
} catch (CloneNotSupportedException cantHappen) {
throw new InternalError();
}
c.keys = null;
c.values = null;
c.entries = null;
c.containsNullKey = containsNullKey;
c.key = key.clone();
c.value = value.clone();
c.link = link.clone();
return c;
}
/**
* Returns a hash code for this map.
*
* This method overrides the generic method provided by the superclass. Since {@code equals()} is
* not overriden, it is important that the value returned by this method is the same value as the
* one returned by the overriden method.
*
* @return a hash code for this map.
*/
@Override
public int hashCode() {
int h = 0;
for (int j = realSize(), i = 0, t = 0; j-- != 0;) {
while (((key[i]) == (0))) i++;
t = (key[i]);
if (this != value[i]) t ^= ((value[i]) == null ? 0 : (value[i]).hashCode());
h += t;
i++;
}
// Zero / null keys have hash zero.
if (containsNullKey) h += ((value[n]) == null ? 0 : (value[n]).hashCode());
return h;
}
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
final int key[] = this.key;
final V value[] = this.value;
final EntryIterator i = new EntryIterator();
s.defaultWriteObject();
for (int j = size, e; j-- != 0;) {
e = i.nextEntry();
s.writeInt(key[e]);
s.writeObject(value[e]);
}
}
@SuppressWarnings("unchecked")
private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
n = arraySize(size, f);
maxFill = maxFill(n, f);
mask = n - 1;
final int key[] = this.key = new int[n + 1];
final V value[] = this.value = (V[])new Object[n + 1];
final long link[] = this.link = new long[n + 1];
int prev = -1;
first = last = -1;
int k;
V v;
for (int i = size, pos; i-- != 0;) {
k = s.readInt();
v = (V)s.readObject();
if (((k) == (0))) {
pos = n;
containsNullKey = true;
} else {
pos = (it.unimi.dsi.fastutil.HashCommon.mix((k))) & mask;
while (!((key[pos]) == (0))) pos = (pos + 1) & mask;
}
key[pos] = k;
value[pos] = v;
if (first != -1) {
link[prev] ^= ((link[prev] ^ (pos & 0xFFFFFFFFL)) & 0xFFFFFFFFL);
link[pos] ^= ((link[pos] ^ ((prev & 0xFFFFFFFFL) << 32)) & 0xFFFFFFFF00000000L);
prev = pos;
} else {
prev = first = pos;
// Special case of SET_PREV(newLink[pos], -1);
link[pos] |= (-1L & 0xFFFFFFFFL) << 32;
}
}
last = prev;
if (prev != -1)
// Special case of SET_NEXT(link[prev], -1);
link[prev] |= -1 & 0xFFFFFFFFL;
if (ASSERTS) checkTable();
}
private void checkTable() {
}
}