All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.fastutil.objects.Object2ObjectOpenHashMap Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists, and queues with a small memory footprint and fast operations; it provides also big (64-bit) arrays, sets, and lists, sorting algorithms, fast, practical I/O classes for binary and text files, and facilities for memory mapping large files. This jar (fastutil-core.jar) contains data structures based on integers, longs, doubles, and objects, only; fastutil.jar contains all classes. If you have both jars in your dependencies, this jar should be excluded.

There is a newer version: 8.5.15
Show newest version
/*
	* Copyright (C) 2002-2022 Sebastiano Vigna
	*
	* Licensed under the Apache License, Version 2.0 (the "License");
	* you may not use this file except in compliance with the License.
	* You may obtain a copy of the License at
	*
	*     http://www.apache.org/licenses/LICENSE-2.0
	*
	* Unless required by applicable law or agreed to in writing, software
	* distributed under the License is distributed on an "AS IS" BASIS,
	* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
	* See the License for the specific language governing permissions and
	* limitations under the License.
	*/
package it.unimi.dsi.fastutil.objects;

import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Map;
import java.util.Arrays;
import java.util.NoSuchElementException;
import java.util.function.Consumer;

/**
 * A type-specific hash map with a fast, small-footprint implementation.
 *
 * 

* Instances of this class use a hash table to represent a map. The table is filled up to a * specified load factor, and then doubled in size to accommodate new entries. If the table * is emptied below one fourth of the load factor, it is halved in size; however, the table * is never reduced to a size smaller than that at creation time: this approach makes it possible to * create maps with a large capacity in which insertions and deletions do not cause immediately * rehashing. Moreover, halving is not performed when deleting entries from an iterator, as it would * interfere with the iteration process. * *

* Note that {@link #clear()} does not modify the hash table size. Rather, a family of * {@linkplain #trim() trimming methods} lets you control the size of the table; this is * particularly useful if you reuse instances of this class. * *

* Entries returned by the type-specific {@link #entrySet()} method implement the suitable * type-specific {@link it.unimi.dsi.fastutil.Pair Pair} interface; only values are mutable. * * @see Hash * @see HashCommon */ public class Object2ObjectOpenHashMap extends AbstractObject2ObjectMap implements java.io.Serializable, Cloneable, Hash { private static final long serialVersionUID = 0L; private static final boolean ASSERTS = false; /** The array of keys. */ protected transient K[] key; /** The array of values. */ protected transient V[] value; /** The mask for wrapping a position counter. */ protected transient int mask; /** Whether this map contains the key zero. */ protected transient boolean containsNullKey; /** The current table size. */ protected transient int n; /** Threshold after which we rehash. It must be the table size times {@link #f}. */ protected transient int maxFill; /** We never resize below this threshold, which is the construction-time {#n}. */ protected final transient int minN; /** Number of entries in the set (including the key zero, if present). */ protected int size; /** The acceptable load factor. */ protected final float f; /** Cached set of entries. */ protected transient FastEntrySet entries; /** Cached set of keys. */ protected transient ObjectSet keys; /** Cached collection of values. */ protected transient ObjectCollection values; /** * Creates a new hash map. * *

* The actual table size will be the least power of two greater than {@code expected}/{@code f}. * * @param expected the expected number of elements in the hash map. * @param f the load factor. */ @SuppressWarnings("unchecked") public Object2ObjectOpenHashMap(final int expected, final float f) { if (f <= 0 || f >= 1) throw new IllegalArgumentException("Load factor must be greater than 0 and smaller than 1"); if (expected < 0) throw new IllegalArgumentException("The expected number of elements must be nonnegative"); this.f = f; minN = n = arraySize(expected, f); mask = n - 1; maxFill = maxFill(n, f); key = (K[])new Object[n + 1]; value = (V[])new Object[n + 1]; } /** * Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * * @param expected the expected number of elements in the hash map. */ public Object2ObjectOpenHashMap(final int expected) { this(expected, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash map with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} entries and * {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. */ public Object2ObjectOpenHashMap() { this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash map copying a given one. * * @param m a {@link Map} to be copied into the new hash map. * @param f the load factor. */ public Object2ObjectOpenHashMap(final Map m, final float f) { this(m.size(), f); putAll(m); } /** * Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given one. * * @param m a {@link Map} to be copied into the new hash map. */ public Object2ObjectOpenHashMap(final Map m) { this(m, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash map copying a given type-specific one. * * @param m a type-specific map to be copied into the new hash map. * @param f the load factor. */ public Object2ObjectOpenHashMap(final Object2ObjectMap m, final float f) { this(m.size(), f); putAll(m); } /** * Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given * type-specific one. * * @param m a type-specific map to be copied into the new hash map. */ public Object2ObjectOpenHashMap(final Object2ObjectMap m) { this(m, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash map using the elements of two parallel arrays. * * @param k the array of keys of the new hash map. * @param v the array of corresponding values in the new hash map. * @param f the load factor. * @throws IllegalArgumentException if {@code k} and {@code v} have different lengths. */ public Object2ObjectOpenHashMap(final K[] k, final V[] v, final float f) { this(k.length, f); if (k.length != v.length) throw new IllegalArgumentException("The key array and the value array have different lengths (" + k.length + " and " + v.length + ")"); for (int i = 0; i < k.length; i++) this.put(k[i], v[i]); } /** * Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using the elements of * two parallel arrays. * * @param k the array of keys of the new hash map. * @param v the array of corresponding values in the new hash map. * @throws IllegalArgumentException if {@code k} and {@code v} have different lengths. */ public Object2ObjectOpenHashMap(final K[] k, final V[] v) { this(k, v, DEFAULT_LOAD_FACTOR); } private int realSize() { return containsNullKey ? size - 1 : size; } private void ensureCapacity(final int capacity) { final int needed = arraySize(capacity, f); if (needed > n) rehash(needed); } private void tryCapacity(final long capacity) { final int needed = (int)Math.min(1 << 30, Math.max(2, HashCommon.nextPowerOfTwo((long)Math.ceil(capacity / f)))); if (needed > n) rehash(needed); } private V removeEntry(final int pos) { final V oldValue = value[pos]; value[pos] = null; size--; shiftKeys(pos); if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return oldValue; } private V removeNullEntry() { containsNullKey = false; key[n] = null; final V oldValue = value[n]; value[n] = null; size--; if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return oldValue; } @Override public void putAll(Map m) { if (f <= .5) ensureCapacity(m.size()); // The resulting map will be sized for m.size() elements else tryCapacity(size() + m.size()); // The resulting map will be tentatively sized for size() + m.size() // elements super.putAll(m); } @SuppressWarnings("unchecked") private int find(final K k) { if (((k) == null)) return containsNullKey ? n : -(n + 1); K curr; final K[] key = this.key; int pos; // The starting point. if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k).hashCode())) & mask]) == null)) return -(pos + 1); if (((k).equals(curr))) return pos; // There's always an unused entry. while (true) { if (((curr = key[pos = (pos + 1) & mask]) == null)) return -(pos + 1); if (((k).equals(curr))) return pos; } } private void insert(final int pos, final K k, final V v) { if (pos == n) containsNullKey = true; key[pos] = k; value[pos] = v; if (size++ >= maxFill) rehash(arraySize(size + 1, f)); if (ASSERTS) checkTable(); } @Override public V put(final K k, final V v) { final int pos = find(k); if (pos < 0) { insert(-pos - 1, k, v); return defRetValue; } final V oldValue = value[pos]; value[pos] = v; return oldValue; } /** * Shifts left entries with the specified hash code, starting at the specified position, and empties * the resulting free entry. * * @param pos a starting position. */ protected final void shiftKeys(int pos) { // Shift entries with the same hash. int last, slot; K curr; final K[] key = this.key; for (;;) { pos = ((last = pos) + 1) & mask; for (;;) { if (((curr = key[pos]) == null)) { key[last] = (null); value[last] = null; return; } slot = (it.unimi.dsi.fastutil.HashCommon.mix((curr).hashCode())) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } key[last] = curr; value[last] = value[pos]; } } @Override @SuppressWarnings("unchecked") public V remove(final Object k) { if ((((K)k) == null)) { if (containsNullKey) return removeNullEntry(); return defRetValue; } K curr; final K[] key = this.key; int pos; // The starting point. if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k).hashCode())) & mask]) == null)) return defRetValue; if (((k).equals(curr))) return removeEntry(pos); while (true) { if (((curr = key[pos = (pos + 1) & mask]) == null)) return defRetValue; if (((k).equals(curr))) return removeEntry(pos); } } @Override @SuppressWarnings("unchecked") public V get(final Object k) { if ((((K)k) == null)) return containsNullKey ? value[n] : defRetValue; K curr; final K[] key = this.key; int pos; // The starting point. if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k).hashCode())) & mask]) == null)) return defRetValue; if (((k).equals(curr))) return value[pos]; // There's always an unused entry. while (true) { if (((curr = key[pos = (pos + 1) & mask]) == null)) return defRetValue; if (((k).equals(curr))) return value[pos]; } } @Override @SuppressWarnings("unchecked") public boolean containsKey(final Object k) { if ((((K)k) == null)) return containsNullKey; K curr; final K[] key = this.key; int pos; // The starting point. if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k).hashCode())) & mask]) == null)) return false; if (((k).equals(curr))) return true; // There's always an unused entry. while (true) { if (((curr = key[pos = (pos + 1) & mask]) == null)) return false; if (((k).equals(curr))) return true; } } @Override public boolean containsValue(final Object v) { final V value[] = this.value; final K key[] = this.key; if (containsNullKey && java.util.Objects.equals(value[n], v)) return true; for (int i = n; i-- != 0;) if (!((key[i]) == null) && java.util.Objects.equals(value[i], v)) return true; return false; } /** {@inheritDoc} */ @Override @SuppressWarnings("unchecked") public V getOrDefault(final Object k, final V defaultValue) { if ((((K)k) == null)) return containsNullKey ? value[n] : defaultValue; K curr; final K[] key = this.key; int pos; // The starting point. if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k).hashCode())) & mask]) == null)) return defaultValue; if (((k).equals(curr))) return value[pos]; // There's always an unused entry. while (true) { if (((curr = key[pos = (pos + 1) & mask]) == null)) return defaultValue; if (((k).equals(curr))) return value[pos]; } } /** {@inheritDoc} */ @Override public V putIfAbsent(final K k, final V v) { final int pos = find(k); if (pos >= 0) return value[pos]; insert(-pos - 1, k, v); return defRetValue; } /** {@inheritDoc} */ @Override @SuppressWarnings("unchecked") public boolean remove(final Object k, final Object v) { if ((((K)k) == null)) { if (containsNullKey && java.util.Objects.equals(v, value[n])) { removeNullEntry(); return true; } return false; } K curr; final K[] key = this.key; int pos; // The starting point. if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k).hashCode())) & mask]) == null)) return false; if (((k).equals(curr)) && java.util.Objects.equals(v, value[pos])) { removeEntry(pos); return true; } while (true) { if (((curr = key[pos = (pos + 1) & mask]) == null)) return false; if (((k).equals(curr)) && java.util.Objects.equals(v, value[pos])) { removeEntry(pos); return true; } } } /** {@inheritDoc} */ @Override public boolean replace(final K k, final V oldValue, final V v) { final int pos = find(k); if (pos < 0 || !java.util.Objects.equals(oldValue, value[pos])) return false; value[pos] = v; return true; } /** {@inheritDoc} */ @Override public V replace(final K k, final V v) { final int pos = find(k); if (pos < 0) return defRetValue; final V oldValue = value[pos]; value[pos] = v; return oldValue; } /** {@inheritDoc} */ @Override public V computeIfAbsent(final K key, final Object2ObjectFunction mappingFunction) { java.util.Objects.requireNonNull(mappingFunction); final int pos = find(key); if (pos >= 0) return value[pos]; if (!mappingFunction.containsKey(key)) return defRetValue; final V newValue = mappingFunction.get(key); insert(-pos - 1, key, newValue); return newValue; } /** {@inheritDoc} */ @Override public V computeIfPresent(final K k, final java.util.function.BiFunction remappingFunction) { java.util.Objects.requireNonNull(remappingFunction); final int pos = find(k); if (pos < 0) return defRetValue; if (value[pos] == null) return defRetValue; final V newValue = remappingFunction.apply((k), (value[pos])); if (newValue == null) { if (((k) == null)) removeNullEntry(); else removeEntry(pos); return defRetValue; } return value[pos] = (newValue); } /** {@inheritDoc} */ @Override public V compute(final K k, final java.util.function.BiFunction remappingFunction) { java.util.Objects.requireNonNull(remappingFunction); final int pos = find(k); final V newValue = remappingFunction.apply((k), pos >= 0 ? (value[pos]) : null); if (newValue == null) { if (pos >= 0) { if (((k) == null)) removeNullEntry(); else removeEntry(pos); } return defRetValue; } V newVal = (newValue); if (pos < 0) { insert(-pos - 1, k, newVal); return newVal; } return value[pos] = newVal; } /** {@inheritDoc} */ @Override public V merge(final K k, final V v, final java.util.function.BiFunction remappingFunction) { java.util.Objects.requireNonNull(remappingFunction); java.util.Objects.requireNonNull(v); final int pos = find(k); if (pos < 0 || value[pos] == null) { if (pos < 0) insert(-pos - 1, k, v); else value[pos] = v; return v; } final V newValue = remappingFunction.apply((value[pos]), (v)); if (newValue == null) { if (((k) == null)) removeNullEntry(); else removeEntry(pos); return defRetValue; } return value[pos] = (newValue); } /* Removes all elements from this map. * *

To increase object reuse, this method does not change the table size. * If you want to reduce the table size, you must use {@link #trim()}. * */ @Override public void clear() { if (size == 0) return; size = 0; containsNullKey = false; Arrays.fill(key, (null)); Arrays.fill(value, null); } @Override public int size() { return size; } @Override public boolean isEmpty() { return size == 0; } /** * The entry class for a hash map does not record key and value, but rather the position in the hash * table of the corresponding entry. This is necessary so that calls to * {@link java.util.Map.Entry#setValue(Object)} are reflected in the map */ final class MapEntry implements Object2ObjectMap.Entry, Map.Entry, it.unimi.dsi.fastutil.Pair { // The table index this entry refers to, or -1 if this entry has been deleted. int index; MapEntry(final int index) { this.index = index; } MapEntry() { } @Override public K getKey() { return key[index]; } @Override public K left() { return key[index]; } @Override public V getValue() { return value[index]; } @Override public V right() { return value[index]; } @Override public V setValue(final V v) { final V oldValue = value[index]; value[index] = v; return oldValue; } @Override public it.unimi.dsi.fastutil.Pair right(final V v) { value[index] = v; return this; } @SuppressWarnings("unchecked") @Override public boolean equals(final Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; return java.util.Objects.equals(key[index], (e.getKey())) && java.util.Objects.equals(value[index], (e.getValue())); } @Override public int hashCode() { return ((key[index]) == null ? 0 : (key[index]).hashCode()) ^ ((value[index]) == null ? 0 : (value[index]).hashCode()); } @Override public String toString() { return key[index] + "=>" + value[index]; } } /** An iterator over a hash map. */ private abstract class MapIterator { /** * The index of the last entry returned, if positive or zero; initially, {@link #n}. If negative, * the last entry returned was that of the key of index {@code - pos - 1} from the {@link #wrapped} * list. */ int pos = n; /** * The index of the last entry that has been returned (more precisely, the value of {@link #pos} if * {@link #pos} is positive, or {@link Integer#MIN_VALUE} if {@link #pos} is negative). It is -1 if * either we did not return an entry yet, or the last returned entry has been removed. */ int last = -1; /** A downward counter measuring how many entries must still be returned. */ int c = size; /** A boolean telling us whether we should return the entry with the null key. */ boolean mustReturnNullKey = Object2ObjectOpenHashMap.this.containsNullKey; /** * A lazily allocated list containing keys of entries that have wrapped around the table because of * removals. */ ObjectArrayList wrapped; @SuppressWarnings("unused") abstract void acceptOnIndex(final ConsumerType action, final int index); public boolean hasNext() { return c != 0; } public int nextEntry() { if (!hasNext()) throw new NoSuchElementException(); c--; if (mustReturnNullKey) { mustReturnNullKey = false; return last = n; } final K key[] = Object2ObjectOpenHashMap.this.key; for (;;) { if (--pos < 0) { // We are just enumerating elements from the wrapped list. last = Integer.MIN_VALUE; final K k = wrapped.get(-pos - 1); int p = (it.unimi.dsi.fastutil.HashCommon.mix((k).hashCode())) & mask; while (!((k).equals(key[p]))) p = (p + 1) & mask; return p; } if (!((key[pos]) == null)) return last = pos; } } public void forEachRemaining(final ConsumerType action) { if (mustReturnNullKey) { mustReturnNullKey = false; acceptOnIndex(action, last = n); c--; } final K key[] = Object2ObjectOpenHashMap.this.key; while (c != 0) { if (--pos < 0) { // We are just enumerating elements from the wrapped list. last = Integer.MIN_VALUE; final K k = wrapped.get(-pos - 1); int p = (it.unimi.dsi.fastutil.HashCommon.mix((k).hashCode())) & mask; while (!((k).equals(key[p]))) p = (p + 1) & mask; acceptOnIndex(action, p); c--; } else if (!((key[pos]) == null)) { acceptOnIndex(action, last = pos); c--; } } } /** * Shifts left entries with the specified hash code, starting at the specified position, and empties * the resulting free entry. * * @param pos a starting position. */ private void shiftKeys(int pos) { // Shift entries with the same hash. int last, slot; K curr; final K[] key = Object2ObjectOpenHashMap.this.key; for (;;) { pos = ((last = pos) + 1) & mask; for (;;) { if (((curr = key[pos]) == null)) { key[last] = (null); value[last] = null; return; } slot = (it.unimi.dsi.fastutil.HashCommon.mix((curr).hashCode())) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } if (pos < last) { // Wrapped entry. if (wrapped == null) wrapped = new ObjectArrayList<>(2); wrapped.add(key[pos]); } key[last] = curr; value[last] = value[pos]; } } public void remove() { if (last == -1) throw new IllegalStateException(); if (last == n) { containsNullKey = false; key[n] = null; value[n] = null; } else if (pos >= 0) shiftKeys(last); else { // We're removing wrapped entries. Object2ObjectOpenHashMap.this.remove(wrapped.set(-pos - 1, null)); last = -1; // Note that we must not decrement size return; } size--; last = -1; // You can no longer remove this entry. if (ASSERTS) checkTable(); } public int skip(final int n) { int i = n; while (i-- != 0 && hasNext()) nextEntry(); return n - i - 1; } } private final class EntryIterator extends MapIterator>> implements ObjectIterator> { private MapEntry entry; @Override public MapEntry next() { return entry = new MapEntry(nextEntry()); } // forEachRemaining inherited from MapIterator superclass. @Override final void acceptOnIndex(final Consumer> action, final int index) { action.accept(entry = new MapEntry(index)); } @Override public void remove() { super.remove(); entry.index = -1; // You cannot use a deleted entry. } } private final class FastEntryIterator extends MapIterator>> implements ObjectIterator> { private final MapEntry entry = new MapEntry(); @Override public MapEntry next() { entry.index = nextEntry(); return entry; } // forEachRemaining inherited from MapIterator superclass. @Override final void acceptOnIndex(final Consumer> action, final int index) { entry.index = index; action.accept(entry); } } private abstract class MapSpliterator> { /** * The index (which bucket) of the next item to give to the action. Unlike {@link SetIterator}, this * counts up instead of down. */ int pos = 0; /** The maximum bucket (exclusive) to iterate to */ int max = n; /** An upwards counter counting how many we have given */ int c = 0; /** A boolean telling us whether we should return the null key. */ boolean mustReturnNull = Object2ObjectOpenHashMap.this.containsNullKey; boolean hasSplit = false; MapSpliterator() { } MapSpliterator(int pos, int max, boolean mustReturnNull, boolean hasSplit) { this.pos = pos; this.max = max; this.mustReturnNull = mustReturnNull; this.hasSplit = hasSplit; } abstract void acceptOnIndex(final ConsumerType action, final int index); abstract SplitType makeForSplit(int pos, int max, boolean mustReturnNull); public boolean tryAdvance(final ConsumerType action) { if (mustReturnNull) { mustReturnNull = false; ++c; acceptOnIndex(action, n); return true; } final K key[] = Object2ObjectOpenHashMap.this.key; while (pos < max) { if (!((key[pos]) == null)) { ++c; acceptOnIndex(action, pos++); return true; } ++pos; } return false; } public void forEachRemaining(final ConsumerType action) { if (mustReturnNull) { mustReturnNull = false; ++c; acceptOnIndex(action, n); } final K key[] = Object2ObjectOpenHashMap.this.key; while (pos < max) { if (!((key[pos]) == null)) { acceptOnIndex(action, pos); ++c; } ++pos; } } public long estimateSize() { if (!hasSplit) { // Root spliterator; we know how many are remaining. return size - c; } else { // After we split, we can no longer know exactly how many we have (or at least not efficiently). // (size / n) * (max - pos) aka currentTableDensity * numberOfBucketsLeft seems like a good // estimate. return Math.min(size - c, (long)(((double)realSize() / n) * (max - pos)) + (mustReturnNull ? 1 : 0)); } } public SplitType trySplit() { if (pos >= max - 1) return null; int retLen = (max - pos) >> 1; if (retLen <= 1) return null; int myNewPos = pos + retLen; int retPos = pos; int retMax = myNewPos; // Since null is returned first, and the convention is that the returned split is the prefix of // elements, // the split will take care of returning null (if needed), and we won't return it anymore. SplitType split = makeForSplit(retPos, retMax, mustReturnNull); this.pos = myNewPos; this.mustReturnNull = false; this.hasSplit = true; return split; } public long skip(long n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); if (n == 0) return 0; long skipped = 0; if (mustReturnNull) { mustReturnNull = false; ++skipped; --n; } final K key[] = Object2ObjectOpenHashMap.this.key; while (pos < max && n > 0) { if (!((key[pos++]) == null)) { ++skipped; --n; } } return skipped; } } private final class EntrySpliterator extends MapSpliterator>, EntrySpliterator> implements ObjectSpliterator> { private static final int POST_SPLIT_CHARACTERISTICS = ObjectSpliterators.SET_SPLITERATOR_CHARACTERISTICS & ~java.util.Spliterator.SIZED; EntrySpliterator() { } EntrySpliterator(int pos, int max, boolean mustReturnNull, boolean hasSplit) { super(pos, max, mustReturnNull, hasSplit); } @Override public int characteristics() { return hasSplit ? POST_SPLIT_CHARACTERISTICS : ObjectSpliterators.SET_SPLITERATOR_CHARACTERISTICS; } @Override final void acceptOnIndex(final Consumer> action, final int index) { action.accept(new MapEntry(index)); } @Override final EntrySpliterator makeForSplit(int pos, int max, boolean mustReturnNull) { return new EntrySpliterator(pos, max, mustReturnNull, true); } } private final class MapEntrySet extends AbstractObjectSet> implements FastEntrySet { @Override public ObjectIterator> iterator() { return new EntryIterator(); } @Override public ObjectIterator> fastIterator() { return new FastEntryIterator(); } @Override public ObjectSpliterator> spliterator() { return new EntrySpliterator(); } // @Override @SuppressWarnings("unchecked") public boolean contains(final Object o) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry)o; final K k = ((K)e.getKey()); final V v = ((V)e.getValue()); if (((k) == null)) return Object2ObjectOpenHashMap.this.containsNullKey && java.util.Objects.equals(value[n], v); K curr; final K[] key = Object2ObjectOpenHashMap.this.key; int pos; // The starting point. if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k).hashCode())) & mask]) == null)) return false; if (((k).equals(curr))) return java.util.Objects.equals(value[pos], v); // There's always an unused entry. while (true) { if (((curr = key[pos = (pos + 1) & mask]) == null)) return false; if (((k).equals(curr))) return java.util.Objects.equals(value[pos], v); } } @Override @SuppressWarnings("unchecked") public boolean remove(final Object o) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry)o; final K k = ((K)e.getKey()); final V v = ((V)e.getValue()); if (((k) == null)) { if (containsNullKey && java.util.Objects.equals(value[n], v)) { removeNullEntry(); return true; } return false; } K curr; final K[] key = Object2ObjectOpenHashMap.this.key; int pos; // The starting point. if (((curr = key[pos = (it.unimi.dsi.fastutil.HashCommon.mix((k).hashCode())) & mask]) == null)) return false; if (((curr).equals(k))) { if (java.util.Objects.equals(value[pos], v)) { removeEntry(pos); return true; } return false; } while (true) { if (((curr = key[pos = (pos + 1) & mask]) == null)) return false; if (((curr).equals(k))) { if (java.util.Objects.equals(value[pos], v)) { removeEntry(pos); return true; } } } } @Override public int size() { return size; } @Override public void clear() { Object2ObjectOpenHashMap.this.clear(); } /** {@inheritDoc} */ @Override public void forEach(final Consumer> consumer) { if (containsNullKey) consumer.accept(new AbstractObject2ObjectMap.BasicEntry(key[n], value[n])); for (int pos = n; pos-- != 0;) if (!((key[pos]) == null)) consumer.accept(new AbstractObject2ObjectMap.BasicEntry(key[pos], value[pos])); } /** {@inheritDoc} */ @Override public void fastForEach(final Consumer> consumer) { final AbstractObject2ObjectMap.BasicEntry entry = new AbstractObject2ObjectMap.BasicEntry<>(); if (containsNullKey) { entry.key = key[n]; entry.value = value[n]; consumer.accept(entry); } for (int pos = n; pos-- != 0;) if (!((key[pos]) == null)) { entry.key = key[pos]; entry.value = value[pos]; consumer.accept(entry); } } } @Override public FastEntrySet object2ObjectEntrySet() { if (entries == null) entries = new MapEntrySet(); return entries; } /** * An iterator on keys. * *

* We simply override the * {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and * possibly their type-specific counterparts) so that they return keys instead of entries. */ private final class KeyIterator extends MapIterator> implements ObjectIterator { public KeyIterator() { super(); } // forEachRemaining inherited from MapIterator superclass. // Despite the superclass declared with generics, the way Java inherits and generates bridge methods // avoids the boxing/unboxing @Override final void acceptOnIndex(final Consumer action, final int index) { action.accept(key[index]); } @Override public K next() { return key[nextEntry()]; } } private final class KeySpliterator extends MapSpliterator, KeySpliterator> implements ObjectSpliterator { private static final int POST_SPLIT_CHARACTERISTICS = ObjectSpliterators.SET_SPLITERATOR_CHARACTERISTICS & ~java.util.Spliterator.SIZED; KeySpliterator() { } KeySpliterator(int pos, int max, boolean mustReturnNull, boolean hasSplit) { super(pos, max, mustReturnNull, hasSplit); } @Override public int characteristics() { return hasSplit ? POST_SPLIT_CHARACTERISTICS : ObjectSpliterators.SET_SPLITERATOR_CHARACTERISTICS; } @Override final void acceptOnIndex(final Consumer action, final int index) { action.accept(key[index]); } @Override final KeySpliterator makeForSplit(int pos, int max, boolean mustReturnNull) { return new KeySpliterator(pos, max, mustReturnNull, true); } } private final class KeySet extends AbstractObjectSet { @Override public ObjectIterator iterator() { return new KeyIterator(); } @Override public ObjectSpliterator spliterator() { return new KeySpliterator(); } /** {@inheritDoc} */ @Override public void forEach(final Consumer consumer) { if (containsNullKey) consumer.accept(key[n]); for (int pos = n; pos-- != 0;) { final K k = key[pos]; if (!((k) == null)) consumer.accept(k); } } @Override public int size() { return size; } @Override public boolean contains(Object k) { return containsKey(k); } @Override public boolean remove(Object k) { final int oldSize = size; Object2ObjectOpenHashMap.this.remove(k); return size != oldSize; } @Override public void clear() { Object2ObjectOpenHashMap.this.clear(); } } @Override public ObjectSet keySet() { if (keys == null) keys = new KeySet(); return keys; } /** * An iterator on values. * *

* We simply override the * {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and * possibly their type-specific counterparts) so that they return values instead of entries. */ private final class ValueIterator extends MapIterator> implements ObjectIterator { public ValueIterator() { super(); } // forEachRemaining inherited from MapIterator superclass. // Despite the superclass declared with generics, the way Java inherits and generates bridge methods // avoids the boxing/unboxing @Override final void acceptOnIndex(final Consumer action, final int index) { action.accept(value[index]); } @Override public V next() { return value[nextEntry()]; } } private final class ValueSpliterator extends MapSpliterator, ValueSpliterator> implements ObjectSpliterator { private static final int POST_SPLIT_CHARACTERISTICS = ObjectSpliterators.COLLECTION_SPLITERATOR_CHARACTERISTICS & ~java.util.Spliterator.SIZED; ValueSpliterator() { } ValueSpliterator(int pos, int max, boolean mustReturnNull, boolean hasSplit) { super(pos, max, mustReturnNull, hasSplit); } @Override public int characteristics() { return hasSplit ? POST_SPLIT_CHARACTERISTICS : ObjectSpliterators.COLLECTION_SPLITERATOR_CHARACTERISTICS; } @Override final void acceptOnIndex(final Consumer action, final int index) { action.accept(value[index]); } @Override final ValueSpliterator makeForSplit(int pos, int max, boolean mustReturnNull) { return new ValueSpliterator(pos, max, mustReturnNull, true); } } @Override public ObjectCollection values() { if (values == null) values = new AbstractObjectCollection() { @Override public ObjectIterator iterator() { return new ValueIterator(); } @Override public ObjectSpliterator spliterator() { return new ValueSpliterator(); } /** {@inheritDoc} */ @Override public void forEach(final Consumer consumer) { if (containsNullKey) consumer.accept(value[n]); for (int pos = n; pos-- != 0;) if (!((key[pos]) == null)) consumer.accept(value[pos]); } @Override public int size() { return size; } @Override public boolean contains(Object v) { return containsValue(v); } @Override public void clear() { Object2ObjectOpenHashMap.this.clear(); } }; return values; } /** * Rehashes the map, making the table as small as possible. * *

* This method rehashes the table to the smallest size satisfying the load factor. It can be used * when the set will not be changed anymore, so to optimize access speed and size. * *

* If the table size is already the minimum possible, this method does nothing. * * @return true if there was enough memory to trim the map. * @see #trim(int) */ public boolean trim() { return trim(size); } /** * Rehashes this map if the table is too large. * *

* Let N be the smallest table size that can hold max(n,{@link #size()}) * entries, still satisfying the load factor. If the current table size is smaller than or equal to * N, this method does nothing. Otherwise, it rehashes this map in a table of size * N. * *

* This method is useful when reusing maps. {@linkplain #clear() Clearing a map} leaves the table * size untouched. If you are reusing a map many times, you can call this method with a typical size * to avoid keeping around a very large table just because of a few large transient maps. * * @param n the threshold for the trimming. * @return true if there was enough memory to trim the map. * @see #trim() */ public boolean trim(final int n) { final int l = HashCommon.nextPowerOfTwo((int)Math.ceil(n / f)); if (l >= this.n || size > maxFill(l, f)) return true; try { rehash(l); } catch (OutOfMemoryError cantDoIt) { return false; } return true; } /** * Rehashes the map. * *

* This method implements the basic rehashing strategy, and may be overridden by subclasses * implementing different rehashing strategies (e.g., disk-based rehashing). However, you should not * override this method unless you understand the internal workings of this class. * * @param newN the new size */ @SuppressWarnings("unchecked") protected void rehash(final int newN) { final K key[] = this.key; final V value[] = this.value; final int mask = newN - 1; // Note that this is used by the hashing macro final K newKey[] = (K[])new Object[newN + 1]; final V newValue[] = (V[])new Object[newN + 1]; int i = n, pos; for (int j = realSize(); j-- != 0;) { while (((key[--i]) == null)); if (!((newKey[pos = (it.unimi.dsi.fastutil.HashCommon.mix((key[i]).hashCode())) & mask]) == null)) while (!((newKey[pos = (pos + 1) & mask]) == null)); newKey[pos] = key[i]; newValue[pos] = value[i]; } newValue[newN] = value[n]; n = newN; this.mask = mask; maxFill = maxFill(n, f); this.key = newKey; this.value = newValue; } /** * Returns a deep copy of this map. * *

* This method performs a deep copy of this hash map; the data stored in the map, however, is not * cloned. Note that this makes a difference only for object keys. * * @return a deep copy of this map. */ @Override @SuppressWarnings("unchecked") public Object2ObjectOpenHashMap clone() { Object2ObjectOpenHashMap c; try { c = (Object2ObjectOpenHashMap)super.clone(); } catch (CloneNotSupportedException cantHappen) { throw new InternalError(); } c.keys = null; c.values = null; c.entries = null; c.containsNullKey = containsNullKey; c.key = key.clone(); c.value = value.clone(); return c; } /** * Returns a hash code for this map. * * This method overrides the generic method provided by the superclass. Since {@code equals()} is * not overriden, it is important that the value returned by this method is the same value as the * one returned by the overriden method. * * @return a hash code for this map. */ @Override public int hashCode() { int h = 0; for (int j = realSize(), i = 0, t = 0; j-- != 0;) { while (((key[i]) == null)) i++; if (this != key[i]) t = ((key[i]).hashCode()); if (this != value[i]) t ^= ((value[i]) == null ? 0 : (value[i]).hashCode()); h += t; i++; } // Zero / null keys have hash zero. if (containsNullKey) h += ((value[n]) == null ? 0 : (value[n]).hashCode()); return h; } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { final K key[] = this.key; final V value[] = this.value; final EntryIterator i = new EntryIterator(); s.defaultWriteObject(); for (int j = size, e; j-- != 0;) { e = i.nextEntry(); s.writeObject(key[e]); s.writeObject(value[e]); } } @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); n = arraySize(size, f); maxFill = maxFill(n, f); mask = n - 1; final K key[] = this.key = (K[])new Object[n + 1]; final V value[] = this.value = (V[])new Object[n + 1]; K k; V v; for (int i = size, pos; i-- != 0;) { k = (K)s.readObject(); v = (V)s.readObject(); if (((k) == null)) { pos = n; containsNullKey = true; } else { pos = (it.unimi.dsi.fastutil.HashCommon.mix((k).hashCode())) & mask; while (!((key[pos]) == null)) pos = (pos + 1) & mask; } key[pos] = k; value[pos] = v; } if (ASSERTS) checkTable(); } private void checkTable() { } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy